-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
438 lines (360 loc) · 17.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import os
import time
import json
import pprint
import random
import numpy as np
import sys
from tqdm import tqdm, trange
from collections import defaultdict
cpath = "D:\\fletcher\\LLMEPET"
sys.path.append(cpath)
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from llm_epet.config import BaseOptions
from llm_epet.start_end_dataset import \
StartEndDataset, start_end_collate, prepare_batch_inputs
from llm_epet.inference import eval_epoch, start_inference, setup_model
from utils.basic_utils import AverageMeter, dict_to_markdown
from utils.model_utils import count_parameters
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
def set_seed(seed, use_cuda=True):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if use_cuda:
torch.cuda.manual_seed_all(seed)
def train_epoch(model, criterion, train_loader, optimizer, opt, epoch_i, tb_writer):
logger.info(f"[Epoch {epoch_i+1}]")
model.train()
criterion.train()
# init meters
time_meters = defaultdict(AverageMeter)
loss_meters = defaultdict(AverageMeter)
num_training_examples = len(train_loader)
timer_dataloading = time.time()
for batch_idx, batch in tqdm(enumerate(train_loader),
desc="Training Iteration",
total=num_training_examples):
time_meters["dataloading_time"].update(time.time() - timer_dataloading)
timer_start = time.time()
model_inputs, targets = prepare_batch_inputs(batch[1], opt.device, non_blocking=opt.pin_memory)
time_meters["prepare_inputs_time"].update(time.time() - timer_start)
timer_start = time.time()
outputs = model(**model_inputs, targets=targets)
# torch.save(atten_data, f'D:\\fletcher\\LLMEPET\\zhengming\\32\\atten_{opt.n_layers}_epoch{epoch_i}_batch{batch_idx}.pt')
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
time_meters["model_forward_time"].update(time.time() - timer_start)
timer_start = time.time()
optimizer.zero_grad()
losses.backward()
if opt.grad_clip > 0:
nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
optimizer.step()
time_meters["model_backward_time"].update(time.time() - timer_start)
loss_dict["loss_overall"] = float(losses) # for logging only
for k, v in loss_dict.items():
loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))
timer_dataloading = time.time()
if opt.debug and batch_idx == 3:
break
# print/add logs
tb_writer.add_scalar("Train/lr", float(optimizer.param_groups[0]["lr"]), epoch_i+1)
for k, v in loss_meters.items():
tb_writer.add_scalar("Train/{}".format(k), v.avg, epoch_i+1)
to_write = opt.train_log_txt_formatter.format(
time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
epoch=epoch_i+1,
loss_str=" ".join(["{} {:.4f}".format(k, v.avg) for k, v in loss_meters.items()]))
with open(opt.train_log_filepath, "a") as f:
f.write(to_write)
logger.info("Epoch time stats:")
for name, meter in time_meters.items():
d = {k: f"{getattr(meter, k):.4f}" for k in ["max", "min", "avg"]}
logger.info(f"{name} ==> {d}")
def train(model, criterion, optimizer, lr_scheduler, train_dataset, val_dataset, opt):
if opt.device.type == "cuda":
logger.info("CUDA enabled.")
model.to(opt.device)
tb_writer = SummaryWriter(opt.tensorboard_log_dir)
tb_writer.add_text("hyperparameters", dict_to_markdown(vars(opt), max_str_len=None))
opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str} [Metrics] {eval_metrics_str}\n"
train_loader = DataLoader(
train_dataset,
collate_fn=start_end_collate,
batch_size=opt.bsz,
num_workers=opt.num_workers,
shuffle=True,
pin_memory=opt.pin_memory
)
prev_best_score = 0.
es_cnt = 0
# start_epoch = -1
if opt.start_epoch is None:
start_epoch = -1 if opt.eval_untrained else 0
else:
start_epoch = opt.start_epoch
save_submission_filename = "latest_{}_{}_preds.jsonl".format(opt.dset_name, opt.eval_split_name)
for epoch_i in trange(start_epoch, opt.n_epoch, desc="Epoch"):
with torch.no_grad():
metrics_no_nms, metrics_nms, eval_loss_meters, latest_file_paths = \
eval_epoch(model, val_dataset, opt, save_submission_filename, epoch_i, criterion, tb_writer)
to_write = opt.eval_log_txt_formatter.format(
time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
epoch=epoch_i,
loss_str=" ".join(["{} {:.4f}".format(k, v.avg) for k, v in eval_loss_meters.items()]),
eval_metrics_str=json.dumps(metrics_no_nms))
with open(opt.eval_log_filepath, "a") as f:
f.write(to_write)
logger.info("metrics_no_nms {}".format(pprint.pformat(metrics_no_nms["brief"], indent=4)))
if metrics_nms is not None:
logger.info("metrics_nms {}".format(pprint.pformat(metrics_nms["brief"], indent=4)))
metrics = metrics_no_nms
for k, v in metrics["brief"].items():
tb_writer.add_scalar(f"Eval/{k}", float(v), epoch_i+1)
if opt.dset_name in ['hl']:
stop_score = metrics["brief"]["MR-full-mAP"]
elif opt.dset_name in ['charadesSTA', 'tacos', 'nlq']:
stop_score = metrics["brief"]["MR-full-mIoU"]
else:
stop_score = (metrics["brief"]["MR-full-R1@0.7"] + metrics["brief"]["MR-full-R1@0.5"]) / 2
# stop_score = metrics["brief"]["MR-full-R1@0.3"]
if epoch_i > -1:
train_epoch(model, criterion, train_loader, optimizer, opt, epoch_i, tb_writer)
lr_scheduler.step()
eval_epoch_interval = opt.eval_epoch
if opt.eval_path is not None and (epoch_i + 1) % eval_epoch_interval == 0:
with torch.no_grad():
metrics_no_nms, metrics_nms, eval_loss_meters, latest_file_paths = \
eval_epoch(model, val_dataset, opt, save_submission_filename, epoch_i, criterion, tb_writer)
# log
to_write = opt.eval_log_txt_formatter.format(
time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
epoch=epoch_i,
loss_str=" ".join(["{} {:.4f}".format(k, v.avg) for k, v in eval_loss_meters.items()]),
eval_metrics_str=json.dumps(metrics_no_nms))
with open(opt.eval_log_filepath, "a") as f:
f.write(to_write)
logger.info("metrics_no_nms {}".format(pprint.pformat(metrics_no_nms["brief"], indent=4)))
if metrics_nms is not None:
logger.info("metrics_nms {}".format(pprint.pformat(metrics_nms["brief"], indent=4)))
metrics = metrics_no_nms
for k, v in metrics["brief"].items():
tb_writer.add_scalar(f"Eval/{k}", float(v), epoch_i+1)
if opt.dset_name in ['hl']:
stop_score = metrics["brief"]["MR-full-mAP"]
elif opt.dset_name in ['charadesSTA', 'tacos', 'nlq']:
stop_score = metrics["brief"]["MR-full-mIoU"]
else:
stop_score = (metrics["brief"]["MR-full-R1@0.7"] + metrics["brief"]["MR-full-R1@0.5"]) / 2
# stop_score = metrics["brief"]["MR-full-R1@0.3"]
if stop_score > prev_best_score:
es_cnt = 0
prev_best_score = stop_score
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch_i,
"opt": opt
}
torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", "_best.ckpt"))
best_file_paths = [e.replace("latest", "best") for e in latest_file_paths]
for src, tgt in zip(latest_file_paths, best_file_paths):
# 检查目标文件是否存在
if os.path.exists(tgt):
# 如果目标文件已存在,先删除它
os.remove(tgt)
# 重命名文件
os.rename(src, tgt) # 使用 os.rename 而非 os.renames,因为我们已经手动处理了目录的创建
# os.renames(src, tgt)
logger.info("The checkpoint file has been updated.")
else:
es_cnt += 1
if opt.max_es_cnt != -1 and es_cnt > opt.max_es_cnt: # early stop
with open(opt.train_log_filepath, "a") as f:
f.write(f"Early Stop at epoch {epoch_i}")
logger.info(f"\n>>>>> Early stop at epoch {epoch_i} {prev_best_score}\n")
break
# save ckpt
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch_i,
"opt": opt
}
torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", "_latest.ckpt"))
# save_interval = 10 if "subs_train" in opt.train_path else 50 # smaller for pretrain
# if (epoch_i + 1) % save_interval == 0 or (epoch_i + 1) % opt.lr_drop == 0: # additional copies
# checkpoint = {
# "model": model.state_dict(),
# "optimizer": optimizer.state_dict(),
# "epoch": epoch_i,
# "opt": opt
# }
# torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", f"_e{epoch_i:04d}.ckpt"))
if opt.debug:
break
tb_writer.close()
def train_hl(model, criterion, optimizer, lr_scheduler, train_dataset, val_dataset, opt):
if opt.device.type == "cuda":
logger.info("CUDA enabled.")
model.to(opt.device)
tb_writer = SummaryWriter(opt.tensorboard_log_dir)
tb_writer.add_text("hyperparameters", dict_to_markdown(vars(opt), max_str_len=None))
opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str} [Metrics] {eval_metrics_str}\n"
train_loader = DataLoader(
train_dataset,
collate_fn=start_end_collate,
batch_size=opt.bsz,
num_workers=opt.num_workers,
shuffle=True,
pin_memory=opt.pin_memory
)
prev_best_score = 0.
es_cnt = 0
# start_epoch = 0
if opt.start_epoch is None:
start_epoch = -1 if opt.eval_untrained else 0
else:
start_epoch = opt.start_epoch
save_submission_filename = "latest_{}_{}_preds.jsonl".format(opt.dset_name, opt.eval_split_name)
for epoch_i in trange(start_epoch, opt.n_epoch, desc="Epoch"):
if epoch_i > -1:
train_epoch(model, criterion, train_loader, optimizer, opt, epoch_i, tb_writer)
lr_scheduler.step()
eval_epoch_interval = 5
if opt.eval_path is not None and (epoch_i + 1) % eval_epoch_interval == 0:
with torch.no_grad():
metrics_no_nms, metrics_nms, eval_loss_meters, latest_file_paths = \
eval_epoch(model, val_dataset, opt, save_submission_filename, epoch_i, criterion, tb_writer)
# log
to_write = opt.eval_log_txt_formatter.format(
time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
epoch=epoch_i,
loss_str=" ".join(["{} {:.4f}".format(k, v.avg) for k, v in eval_loss_meters.items()]),
eval_metrics_str=json.dumps(metrics_no_nms))
with open(opt.eval_log_filepath, "a") as f:
f.write(to_write)
logger.info("metrics_no_nms {}".format(pprint.pformat(metrics_no_nms["brief"], indent=4)))
if metrics_nms is not None:
logger.info("metrics_nms {}".format(pprint.pformat(metrics_nms["brief"], indent=4)))
metrics = metrics_no_nms
for k, v in metrics["brief"].items():
tb_writer.add_scalar(f"Eval/{k}", float(v), epoch_i+1)
# stop_score = metrics["brief"]["MR-full-mAP"]
stop_score = metrics["brief"]["mAP"]
if stop_score > prev_best_score:
es_cnt = 0
prev_best_score = stop_score
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch_i,
"opt": opt
}
torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", "_best.ckpt"))
best_file_paths = [e.replace("latest", "best") for e in latest_file_paths]
for src, tgt in zip(latest_file_paths, best_file_paths):
os.renames(src, tgt)
logger.info("The checkpoint file has been updated.")
else:
es_cnt += 1
if opt.max_es_cnt != -1 and es_cnt > opt.max_es_cnt: # early stop
with open(opt.train_log_filepath, "a") as f:
f.write(f"Early Stop at epoch {epoch_i}")
logger.info(f"\n>>>>> Early stop at epoch {epoch_i} {prev_best_score}\n")
break
# save ckpt
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch_i,
"opt": opt
}
torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", "_latest.ckpt"))
# save_interval = 10 if "subs_train" in opt.train_path else 50 # smaller for pretrain
# if (epoch_i + 1) % save_interval == 0 or (epoch_i + 1) % opt.lr_drop == 0: # additional copies
# checkpoint = {
# "model": model.state_dict(),
# "optimizer": optimizer.state_dict(),
# "epoch": epoch_i,
# "opt": opt
# }
# torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", f"_e{epoch_i:04d}.ckpt"))
if opt.debug:
break
tb_writer.close()
def start_training():
logger.info("Setup config, data and model...")
opt = BaseOptions().parse()
set_seed(opt.seed)
if opt.debug: # keep the model run deterministically
# 'cudnn.benchmark = True' enabled auto finding the best algorithm for a specific input/net config.
# Enable this only when input size is fixed.
cudnn.benchmark = False
cudnn.deterministic = True
dataset_config = dict(
dset_name=opt.dset_name,
data_path=opt.train_path,
v_feat_dirs=opt.v_feat_dirs,
q_feat_dir=opt.t_feat_dir,
q_feat_type="last_hidden_state",
max_q_l=opt.max_q_l,
max_v_l=opt.max_v_l,
ctx_mode=opt.ctx_mode,
data_ratio=opt.data_ratio,
normalize_v=not opt.no_norm_vfeat,
normalize_t=not opt.no_norm_tfeat,
clip_len=opt.clip_length,
max_windows=opt.max_windows,
span_loss_type=opt.span_loss_type,
txt_drop_ratio=opt.txt_drop_ratio,
dset_domain=opt.dset_domain,
)
dataset_config["data_path"] = opt.train_path
train_dataset = StartEndDataset(**dataset_config)
if opt.eval_path is not None:
dataset_config["data_path"] = opt.eval_path
dataset_config["txt_drop_ratio"] = 0
dataset_config["q_feat_dir"] = opt.t_feat_dir.replace("sub_features", "text_features") # for pretraining
# dataset_config["load_labels"] = False # uncomment to calculate eval loss
eval_dataset = StartEndDataset(**dataset_config)
else:
eval_dataset = None
model, criterion, optimizer, lr_scheduler = setup_model(opt)
logger.info(f"Model {model}")
count_parameters(model)
logger.info("Start Training...")
# For tvsum dataset, use train_hl function
if opt.dset_name in ['tvsum', 'youtube_uni']:
train_hl(model, criterion, optimizer, lr_scheduler, train_dataset, eval_dataset, opt)
else:
train(model, criterion, optimizer, lr_scheduler, train_dataset, eval_dataset, opt)
return opt.ckpt_filepath.replace(".ckpt", "_best.ckpt"), opt.eval_split_name, opt.eval_path, opt.debug, opt
if __name__ == '__main__':
best_ckpt_path, eval_split_name, eval_path, debug, opt = start_training()
if not debug:
input_args = ["--resume", best_ckpt_path,
"--eval_split_name", eval_split_name,
"--eval_path", eval_path]
import sys
sys.argv[1:] = input_args
logger.info("\n\n\nFINISHED TRAINING!!!")
logger.info("Evaluating model at {}".format(best_ckpt_path))
logger.info("Input args {}".format(sys.argv[1:]))
start_inference(opt)