-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathinference.py
481 lines (392 loc) · 18.2 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import pprint
from tqdm import tqdm, trange
import numpy as np
import os
from collections import OrderedDict, defaultdict
import torch
import sys
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
cpath = "D:\\fletcher\\LLMEPET"
sys.path.append(cpath)
from llm_epet.config import TestOptions
from llm_epet.model import build_model
from llm_epet.span_utils import span_cxw_to_xx
from llm_epet.start_end_dataset import StartEndDataset, start_end_collate, prepare_batch_inputs
from llm_epet.postprocessing_cg_detr import PostProcessorDETR
from standalone_eval.eval import eval_submission
from utils.basic_utils import AverageMeter
from utils.basic_utils import save_jsonl, save_json
from utils.temporal_nms import temporal_nms
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
def post_processing_mr_nms(mr_res, nms_thd, max_before_nms, max_after_nms):
mr_res_after_nms = []
for e in mr_res:
e["pred_relevant_windows"] = temporal_nms(
e["pred_relevant_windows"][:max_before_nms],
nms_thd=nms_thd,
max_after_nms=max_after_nms
)
mr_res_after_nms.append(e)
return mr_res_after_nms
def eval_epoch_post_processing(submission, opt, gt_data, save_submission_filename):
# IOU_THDS = (0.5, 0.7)
logger.info("Saving/Evaluating before nms results")
submission_path = os.path.join(opt.results_dir, save_submission_filename)
save_jsonl(submission, submission_path)
if opt.eval_split_name in ["val"]: # since test_public has no GT
metrics = eval_submission(
submission, gt_data,
verbose=opt.debug, match_number=not opt.debug
)
save_metrics_path = submission_path.replace(".jsonl", "_metrics.json")
save_json(metrics, save_metrics_path, save_pretty=True, sort_keys=False)
latest_file_paths = [submission_path, save_metrics_path]
else:
metrics = None
latest_file_paths = [submission_path, ]
if opt.nms_thd != -1:
logger.info("[MR] Performing nms with nms_thd {}".format(opt.nms_thd))
submission_after_nms = post_processing_mr_nms(
submission, nms_thd=opt.nms_thd,
max_before_nms=opt.max_before_nms, max_after_nms=opt.max_after_nms
)
logger.info("Saving/Evaluating nms results")
submission_nms_path = submission_path.replace(".jsonl", "_nms_thd_{}.jsonl".format(opt.nms_thd))
save_jsonl(submission_after_nms, submission_nms_path)
if opt.eval_split_name == "val":
metrics_nms = eval_submission(
submission_after_nms, gt_data,
verbose=opt.debug, match_number=not opt.debug
)
save_metrics_nms_path = submission_nms_path.replace(".jsonl", "_metrics.json")
save_json(metrics_nms, save_metrics_nms_path, save_pretty=True, sort_keys=False)
latest_file_paths += [submission_nms_path, save_metrics_nms_path]
else:
metrics_nms = None
latest_file_paths = [submission_nms_path, ]
else:
metrics_nms = None
return metrics, metrics_nms, latest_file_paths
# for HL
@torch.no_grad()
def compute_hl_results(model, eval_loader, opt, epoch_i=None, criterion=None, tb_writer=None):
model.eval()
if criterion:
assert eval_loader.dataset.load_labels
criterion.eval()
loss_meters = defaultdict(AverageMeter)
write_tb = tb_writer is not None and epoch_i is not None
mr_res = []
topk = 5 # top-5 map
video_ap_collected = []
for batch in tqdm(eval_loader, desc="compute st ed scores"):
query_meta = batch[0]
model_inputs, targets = prepare_batch_inputs(batch[1], opt.device, non_blocking=opt.pin_memory)
outputs = model(**model_inputs)
# loss meters
# if criterion:
# loss_dict = criterion(outputs, targets)
# weight_dict = criterion.weight_dict
# print(loss_dict)
# print(weight_dict)
# print('#######')
# {'loss_saliency': tensor(18.1374, device='cuda:0')}
# {'loss_span': 10, 'loss_giou': 1, 'loss_label': 4, 'loss_saliency': 1.0, 'loss_ms_align': 1.0,
# 'loss_distill': 1.0, 'loss_span_0': 10, 'loss_giou_0': 1, 'loss_label_0': 4, 'loss_ms_align_0': 1.0,
# 'loss_distill_0': 1.0}
# losses=0.
# print(loss_dict.keys(), weight_dict.keys())
# losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# loss_dict["loss_overall"] = float(losses) # for logging only
# print(loss_dict.items())
#
# print(weight_dict.items())
# for k, v in loss_dict.items():
# loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))
preds = outputs['saliency_scores'].clone().detach()
for meta, pred in zip(query_meta, preds):
pred = pred
label = meta['label'] # raw label
video_ap = []
# Follow the UMT code "https://github.com/TencentARC/UMT/blob/main/datasets/tvsum.py"
if opt.dset_name in ["tvsum"]:
for i in range(20):
pred=pred.cpu()
cur_pred = pred[:len(label)]
inds = torch.argsort(cur_pred, descending=True, dim=-1)
# video_id = self.get_video_id(idx)
cur_label = torch.Tensor(label)[:, i]
cur_label = torch.where(cur_label > cur_label.median(), 1.0, .0)
cur_label = cur_label[inds].tolist()[:topk]
# if (num_gt := sum(cur_label)) == 0:
num_gt = sum(cur_label)
if num_gt == 0:
video_ap.append(0)
continue
hits = ap = rec = 0
prc = 1
for j, gt in enumerate(cur_label):
hits += gt
_rec = hits / num_gt
_prc = hits / (j + 1)
ap += (_rec - rec) * (prc + _prc) / 2
rec, prc = _rec, _prc
video_ap.append(ap)
elif opt.dset_name in ["youtube_uni"]:
cur_pred = pred[:len(label)]
# if opt.dset_name == "tvsum_sfc":
cur_pred = cur_pred.cpu()
inds = torch.argsort(cur_pred, descending=True, dim=-1)
cur_label = torch.Tensor(label).squeeze()[inds].tolist()
num_gt = sum(cur_label)
if num_gt == 0:
video_ap.append(0)
continue
hits = ap = rec = 0
prc = 1
for j, gt in enumerate(cur_label):
hits += gt
_rec = hits / num_gt
_prc = hits / (j + 1)
ap += (_rec - rec) * (prc + _prc) / 2
rec, prc = _rec, _prc
video_ap.append(float(ap))
else:
print("No such dataset")
exit(-1)
video_ap_collected.append(video_ap)
mean_ap = np.mean(video_ap_collected)
submmission = dict(mAP=round(mean_ap, 5))
# tensorboard writer
if write_tb and criterion:
for k, v in loss_meters.items():
tb_writer.add_scalar("Eval/{}".format(k), v.avg, epoch_i + 1)
return submmission, loss_meters
@torch.no_grad()
def compute_mr_results(model, eval_loader, opt, epoch_i=None, criterion=None, tb_writer=None):
model.eval()
if criterion:
assert eval_loader.dataset.load_labels
criterion.eval()
loss_meters = defaultdict(AverageMeter)
write_tb = tb_writer is not None and epoch_i is not None
mr_res = []
for batch in tqdm(eval_loader, desc="compute st ed scores"):
query_meta = batch[0]
model_inputs, targets = prepare_batch_inputs(batch[1], opt.device, non_blocking=opt.pin_memory)
outputs = model(**model_inputs)
prob = F.softmax(outputs["pred_logits"], -1) # (batch_size, #queries, #classes=2)
if opt.span_loss_type == "l1":
scores = prob[..., 0] # * (batch_size, #queries) foreground label is 0, we directly take it
pred_spans = outputs["pred_spans"] # (bsz, #queries, 2)
_saliency_scores = outputs["saliency_scores"].half() # (bsz, L)
saliency_scores = []
valid_vid_lengths = model_inputs["src_vid_mask"].sum(1).cpu().tolist()
for j in range(len(valid_vid_lengths)):
saliency_scores.append(_saliency_scores[j, :int(valid_vid_lengths[j])].tolist())
else:
bsz, n_queries = outputs["pred_spans"].shape[:2] # # (bsz, #queries, max_v_l *2)
pred_spans_logits = outputs["pred_spans"].view(bsz, n_queries, 2, opt.max_v_l)
pred_span_scores, pred_spans = F.softmax(pred_spans_logits, dim=-1).max(-1) # 2 * (bsz, #queries, 2)
scores = torch.prod(pred_span_scores, 2) # (bsz, #queries)
pred_spans[:, 1] += 1
pred_spans *= opt.clip_length
# compose predictions
for idx, (meta, spans, score) in enumerate(zip(query_meta, pred_spans.cpu(), scores.cpu())):
if opt.span_loss_type == "l1":
spans = span_cxw_to_xx(spans) * meta["duration"]
spans = torch.clamp(spans, 0, meta["duration"])
# # (#queries, 3), [st(float), ed(float), score(float)]
cur_ranked_preds = torch.cat([spans, score[:, None]], dim=1).tolist()
if not opt.no_sort_results:
cur_ranked_preds = sorted(cur_ranked_preds, key=lambda x: x[2], reverse=True)
cur_ranked_preds = [[float(f"{e:.4f}") for e in row] for row in cur_ranked_preds]
cur_query_pred = dict(
qid=meta["qid"],
query=meta["query"],
vid=meta["vid"],
pred_relevant_windows=cur_ranked_preds,
pred_saliency_scores=saliency_scores[idx]
)
mr_res.append(cur_query_pred)
if criterion:
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
loss_dict["loss_overall"] = float(losses) # for logging only
for k, v in loss_dict.items():
loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))
if opt.debug:
break
if write_tb and criterion:
for k, v in loss_meters.items():
tb_writer.add_scalar("Eval/{}".format(k), v.avg, epoch_i + 1)
if opt.dset_name in ['hl']:
post_processor = PostProcessorDETR(
clip_length=opt.clip_length, min_ts_val=0, max_ts_val=150,
min_w_l=2, max_w_l=150, move_window_method="left",
process_func_names=("clip_ts", "round_multiple")
)
elif opt.dset_name in ['charadesSTA']:
if opt.v_feat_dim == 4096: # vgg
post_processor = PostProcessorDETR(
clip_length=opt.clip_length, min_ts_val=0, max_ts_val=360,
min_w_l=12, max_w_l=360, move_window_method="left",
process_func_names=("clip_ts", "round_multiple")
)
else:
post_processor = PostProcessorDETR(
clip_length=opt.clip_length, min_ts_val=0, max_ts_val=150,
min_w_l=2, max_w_l=60, move_window_method="left",
process_func_names=("clip_ts", "round_multiple")
)
else:
post_processor = PostProcessorDETR(
clip_length=opt.clip_length, min_ts_val=0, max_ts_val=50000,
min_w_l=0, max_w_l=50000, move_window_method="left",
process_func_names=(["round_multiple"])
)
mr_res = post_processor(mr_res)
return mr_res, loss_meters
def get_eval_res(model, eval_loader, opt, epoch_i, criterion, tb_writer):
"""compute and save query and video proposal embeddings"""
eval_res, eval_loss_meters = compute_mr_results(model, eval_loader, opt, epoch_i, criterion, tb_writer) # list(dict)
return eval_res, eval_loss_meters
def eval_epoch(model, eval_dataset, opt, save_submission_filename, epoch_i=None, criterion=None, tb_writer=None):
logger.info("Generate submissions")
model.eval()
if criterion is not None and eval_dataset.load_labels:
criterion.eval()
else:
criterion = None
if opt.dset_name == 'tacos':
shuffle = True
else:
shuffle = False
eval_loader = DataLoader(
eval_dataset,
collate_fn=start_end_collate,
batch_size=opt.eval_bsz,
num_workers=opt.num_workers,
shuffle=shuffle,
pin_memory=opt.pin_memory
)
# tvsum
if opt.dset_name in ['tvsum', 'youtube_uni']:
metrics, eval_loss_meters = compute_hl_results(model, eval_loader, opt, epoch_i, criterion, tb_writer)
# to match original save format
submission = [
{"brief": metrics}
]
submission_path = os.path.join(opt.results_dir, "latest_metric.jsonl")
save_jsonl(submission, submission_path)
return submission[0], submission[0], eval_loss_meters, [submission_path]
else:
submission, eval_loss_meters = get_eval_res(model, eval_loader, opt, epoch_i, criterion, tb_writer)
if opt.dset_name in ['charadesSTA', 'tacos', 'nlq']:
new_submission = []
for s in submission:
s.pop('pred_saliency_scores', None)
new_submission.append(s)
submission = new_submission
if opt.no_sort_results:
save_submission_filename = save_submission_filename.replace(".jsonl", "_unsorted.jsonl")
metrics, metrics_nms, latest_file_paths = eval_epoch_post_processing(
submission, opt, eval_dataset.data, save_submission_filename)
return metrics, metrics_nms, eval_loss_meters, latest_file_paths
def setup_model(opt):
"""setup model/optimizer/scheduler and load checkpoints when needed"""
logger.info("setup model/optimizer/scheduler")
model, criterion = build_model(opt)
if opt.device.type == "cuda":
logger.info("CUDA enabled.")
model.to(opt.device)
criterion.to(opt.device)
param_dicts = [{"params": [p for n, p in model.named_parameters() if p.requires_grad]}]
optimizer = torch.optim.AdamW(param_dicts, lr=opt.lr, weight_decay=opt.wd)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, opt.lr_drop)
if opt.resume is not None:
logger.info(f"Load checkpoint from {opt.resume}")
checkpoint = torch.load(opt.resume, map_location="cpu")
from collections import OrderedDict
new_state_dict = OrderedDict()
if 'pt' in opt.resume[:-4]:
if 'asr' in opt.resume[:25]:
model.load_state_dict(checkpoint["model"])
else:
for k, v in checkpoint["model"].items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# model.load_state_dict(checkpoint["model"])
model.load_state_dict(new_state_dict)
else:
model.load_state_dict(checkpoint["model"],strict=False)
if opt.resume_all:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
opt.start_epoch = checkpoint['epoch'] + 1
logger.info(f"Loaded model saved at epoch {checkpoint['epoch']} from checkpoint: {opt.resume}")
else:
logger.warning("If you intend to evaluate the model, please specify --resume with ckpt path")
return model, criterion, optimizer, lr_scheduler
def start_inference(train_opt=None, split=None, splitfile=None):
if train_opt is not None:
opt = TestOptions().parse(train_opt.a_feat_dir)
else:
opt = TestOptions().parse()
if split is not None:
opt.eval_split_name = split
if splitfile is not None:
opt.eval_path = splitfile
print(opt.eval_split_name)
print(opt.eval_path)
logger.info("Setup config, data and model...")
cudnn.benchmark = True
cudnn.deterministic = False
assert opt.eval_path is not None
if opt.eval_split_name == 'val':
loadlabel = True
else:
loadlabel = False
eval_dataset = StartEndDataset(
dset_name=opt.dset_name,
data_path=opt.eval_path,
v_feat_dirs=opt.v_feat_dirs,
q_feat_dir=opt.t_feat_dir,
q_feat_type="last_hidden_state",
max_q_l=opt.max_q_l,
max_v_l=opt.max_v_l,
ctx_mode=opt.ctx_mode,
data_ratio=opt.data_ratio,
normalize_v=not opt.no_norm_vfeat,
normalize_t=not opt.no_norm_tfeat,
clip_len=opt.clip_length,
max_windows=opt.max_windows,
load_labels=loadlabel, # opt.eval_split_name == "val",
span_loss_type=opt.span_loss_type,
txt_drop_ratio=0,
dset_domain=opt.dset_domain,
)
model, criterion, _, _ = setup_model(opt)
save_submission_filename = "hl_{}_submission.jsonl".format(
opt.eval_split_name)
# save_submission_filename = "inference_{}_{}_{}_preds.jsonl".format(
# opt.dset_name, opt.eval_split_name, opt.eval_id)
logger.info("Starting inference...")
with torch.no_grad():
metrics_no_nms, metrics_nms, eval_loss_meters, latest_file_paths = \
eval_epoch(model, eval_dataset, opt, save_submission_filename, criterion=criterion)
if opt.eval_split_name == 'val':
logger.info("metrics_no_nms {}".format(pprint.pformat(metrics_no_nms["brief"], indent=4)))
if metrics_nms is not None:
logger.info("metrics_nms {}".format(pprint.pformat(metrics_nms["brief"], indent=4)))
from sys import argv
if __name__ == '__main__':
_,_,_,_,split,_,splitfile = argv
start_inference(split=split, splitfile=splitfile)