|
| 1 | +""" |
| 2 | +Dependencies: |
| 3 | +$ pip install mamba-ssm==2.2.2 triton==2.3.1 |
| 4 | +
|
| 5 | +For correctness check, see: |
| 6 | +https://github.com/sustcsonglin/flash-linear-attention/pull/49 |
| 7 | +""" |
| 8 | + |
| 9 | +import torch |
| 10 | +import triton |
| 11 | + |
| 12 | +from fla.ops.simple_gla import chunk_simple_gla |
| 13 | + |
| 14 | +from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined |
| 15 | + |
| 16 | + |
| 17 | +@triton.testing.perf_report( |
| 18 | + triton.testing.Benchmark( |
| 19 | + # argument names to use as an x-axis for the plot |
| 20 | + x_names=['T'], |
| 21 | + # different possible values for `x_name` |
| 22 | + x_vals=[64] + [128 * 2 ** i for i in range(0, 8)], |
| 23 | + # argument name whose value corresponds to a different line in the plot |
| 24 | + line_arg='provider', |
| 25 | + # possible values for `line_arg`` |
| 26 | + line_vals=["chunk_simple_gla", "mamba2_ssd"], |
| 27 | + # label name for the lines |
| 28 | + line_names=["chunk_simple_gla", "mamba2_ssd"], |
| 29 | + # line styles |
| 30 | + styles=[('blue', '-'), ('red', '-')], |
| 31 | + ylabel="Execution Time (ms)", # label name for the y-axis |
| 32 | + # name for the plot. Used also as a file name for saving the plot. |
| 33 | + plot_name="Performance", |
| 34 | + args={}, |
| 35 | + ) |
| 36 | +) |
| 37 | +def benchmark(T, provider): |
| 38 | + # TODO: also add bwd pass benchmark |
| 39 | + device = 'cuda' |
| 40 | + dtype = torch.bfloat16 |
| 41 | + B, H, D = 16, 8, 128 |
| 42 | + # TODO: test more shapes |
| 43 | + # TODO: different values for D_V and D_QK |
| 44 | + # TODO: different values for H_Q and H_KV |
| 45 | + final_state = False # does not impact performance |
| 46 | + |
| 47 | + # initialize Mamba2-format inputs |
| 48 | + X_mamba = 0.1 * torch.randn(B, T, H, D, dtype=dtype, device=device) |
| 49 | + dt_mamba = torch.ones(B, T, H, dtype=dtype, device=device) |
| 50 | + A_mamba = -0.1 * torch.rand(H, dtype=dtype, device=device) |
| 51 | + B_mamba = 0.1 * torch.randn(B, T, H, D, dtype=dtype, device=device) |
| 52 | + C_mamba = 0.1 * torch.randn(B, T, H, D, dtype=dtype, device=device) |
| 53 | + |
| 54 | + quantiles = [0.5, 0.2, 0.8] |
| 55 | + if provider == 'chunk_simple_gla': |
| 56 | + # mapping inputs Mamba2 -> FLA |
| 57 | + # C, B, X: [B, T, H, D] -> [B, H, T, D] |
| 58 | + # g: [B, T, H] -> [B, H, T] |
| 59 | + q = C_mamba.transpose(1, 2).contiguous() |
| 60 | + k = B_mamba.transpose(1, 2).contiguous() |
| 61 | + v = X_mamba.transpose(1, 2).contiguous() |
| 62 | + g = (A_mamba * dt_mamba).transpose(1, 2).contiguous() |
| 63 | + # NOTE: whether to include the memory-copy cost of `contiguous()`? |
| 64 | + # this depends on the memory layout used by surrounding non-SSM layers |
| 65 | + |
| 66 | + results = triton.testing.do_bench( |
| 67 | + lambda: chunk_simple_gla( |
| 68 | + q, k, v, g, scale=1.0, output_final_state=final_state |
| 69 | + ), quantiles=quantiles |
| 70 | + ) |
| 71 | + |
| 72 | + elif provider == 'mamba2_ssd': |
| 73 | + # NOTE: `chunk_size` is configurable in mamba2 kernel |
| 74 | + # here sets to the same hard-coded `BT = 64` as in simple_gla kernel |
| 75 | + # TODO: benchmark different chunk sizes |
| 76 | + results = triton.testing.do_bench( |
| 77 | + lambda: mamba_chunk_scan_combined( |
| 78 | + X_mamba, dt_mamba, A_mamba, B_mamba, C_mamba, |
| 79 | + chunk_size=64, D=None, return_final_states=final_state |
| 80 | + ), |
| 81 | + quantiles=quantiles |
| 82 | + ) |
| 83 | + return results |
| 84 | + |
| 85 | +if __name__ == '__main__': |
| 86 | + benchmark.run(print_data=True, save_path='.') |
0 commit comments