-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added detection training/testing scripts
- Loading branch information
Showing
2 changed files
with
709 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,225 @@ | ||
# Copyright (c) MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import json | ||
import logging | ||
import sys | ||
import time | ||
from copy import deepcopy | ||
|
||
import numpy as np | ||
import torch | ||
from generate_transforms import generate_detection_inference_transform | ||
|
||
import monai | ||
from monai.apps.detection.networks.retinanet_detector import RetinaNetDetector | ||
from monai.apps.detection.networks.retinanet_network import ( | ||
RetinaNet, | ||
resnet_fpn_feature_extractor, | ||
) | ||
from monai.apps.detection.transforms.dictionary import ClipBoxToImaged | ||
from monai.apps.detection.utils.anchor_utils import AnchorGeneratorWithAnchorShape | ||
from monai.data import DataLoader, Dataset, load_decathlon_datalist | ||
from monai.data.utils import no_collation | ||
from monai.networks.nets import resnet | ||
from monai.transforms import Compose, DeleteItemsd, Invertd, ScaleIntensityRanged | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser(description="PyTorch Object Detection Testing") | ||
parser.add_argument( | ||
"-e", | ||
"--environment-file", | ||
default="./config/environment.json", | ||
help="environment json file that stores environment path", | ||
) | ||
parser.add_argument( | ||
"-c", | ||
"--config-file", | ||
default="./config/config_test.json", | ||
help="config json file that stores hyper-parameters", | ||
) | ||
args = parser.parse_args() | ||
|
||
amp = True | ||
|
||
monai.config.print_config() | ||
|
||
env_dict = json.load(open(args.environment_file, "r")) | ||
config_dict = json.load(open(args.config_file, "r")) | ||
|
||
for k, v in env_dict.items(): | ||
setattr(args, k, v) | ||
for k, v in config_dict.items(): | ||
setattr(args, k, v) | ||
|
||
patch_size = args.val_patch_size | ||
|
||
# 1. define transform | ||
intensity_transform = ScaleIntensityRanged( | ||
keys=["image"], | ||
a_min=-1024, | ||
a_max=300.0, | ||
b_min=0.0, | ||
b_max=1.0, | ||
clip=True, | ||
) | ||
inference_transforms, post_transforms = generate_detection_inference_transform( | ||
"image", | ||
"pred_box", | ||
"pred_label", | ||
"pred_score", | ||
args.gt_box_mode, | ||
intensity_transform, | ||
affine_lps_to_ras=False, | ||
amp=amp, | ||
) | ||
|
||
# 2. create a inference data loader | ||
inference_data = load_decathlon_datalist( | ||
args.data_list_file_path, | ||
is_segmentation=True, | ||
data_list_key="validation", | ||
base_dir=args.data_base_dir, | ||
) | ||
inference_ds = Dataset( | ||
data=inference_data, | ||
transform=inference_transforms, | ||
) | ||
inference_loader = DataLoader( | ||
inference_ds, | ||
batch_size=1, | ||
num_workers=4, | ||
pin_memory=torch.cuda.is_available(), | ||
collate_fn=no_collation, | ||
) | ||
|
||
# 3. build model | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
# 1) build anchor generator | ||
# returned_layers: when target boxes are small, set it smaller | ||
# base_anchor_shapes: anchor shape for the most high-resolution output, | ||
# when target boxes are small, set it smaller | ||
anchor_generator = AnchorGeneratorWithAnchorShape( | ||
feature_map_scales=[2**l for l in range(len(args.returned_layers) + 1)], | ||
base_anchor_shapes=args.base_anchor_shapes, | ||
) | ||
|
||
# 2) build network | ||
net = torch.jit.load(env_dict["model_path"]).to(device) | ||
print(f"Load model from {env_dict['model_path']}") | ||
|
||
# 3) build detector | ||
detector = RetinaNetDetector( | ||
network=net, anchor_generator=anchor_generator, debug=False | ||
) | ||
|
||
# set inference components | ||
detector.set_box_selector_parameters( | ||
score_thresh=args.score_thresh, | ||
topk_candidates_per_level=1000, | ||
nms_thresh=args.nms_thresh, | ||
detections_per_img=100, | ||
) | ||
detector.set_sliding_window_inferer( | ||
roi_size=patch_size, | ||
overlap=0.25, | ||
sw_batch_size=1, | ||
mode="gaussian", | ||
device="cpu", | ||
) | ||
|
||
# 4. apply trained model | ||
results_dict = {"validation": []} | ||
detector.eval() | ||
|
||
with torch.no_grad(): | ||
start_time = time.time() | ||
for inference_data in inference_loader: | ||
print(inference_data) | ||
inference_img_filenames = [ | ||
inference_data_i["image_meta_dict"]["filename_or_obj"] | ||
for inference_data_i in inference_data | ||
] | ||
print(inference_img_filenames) | ||
use_inferer = not all( | ||
[ | ||
inference_data_i["image"][0, ...].numel() < np.prod(patch_size) | ||
for inference_data_i in inference_data | ||
] | ||
) | ||
inference_inputs = [ | ||
inference_data_i["image"].to(device) | ||
for inference_data_i in inference_data | ||
] | ||
|
||
if amp: | ||
with torch.cuda.amp.autocast(): | ||
inference_outputs = detector( | ||
inference_inputs, use_inferer=use_inferer | ||
) | ||
else: | ||
inference_outputs = detector(inference_inputs, use_inferer=use_inferer) | ||
del inference_inputs | ||
|
||
# update inference_data for post transform | ||
for i in range(len(inference_outputs)): | ||
inference_data_i, inference_pred_i = ( | ||
inference_data[i], | ||
inference_outputs[i], | ||
) | ||
inference_data_i["pred_box"] = inference_pred_i[ | ||
detector.target_box_key | ||
].to(torch.float32) | ||
inference_data_i["pred_label"] = inference_pred_i[ | ||
detector.target_label_key | ||
] | ||
inference_data_i["pred_score"] = inference_pred_i[ | ||
detector.pred_score_key | ||
].to(torch.float32) | ||
inference_data[i] = post_transforms(inference_data_i) | ||
|
||
for inference_img_filename, inference_pred_i in zip( | ||
inference_img_filenames, inference_data | ||
): | ||
result = { | ||
"label": inference_pred_i["pred_label"] | ||
.cpu() | ||
.detach() | ||
.numpy() | ||
.tolist(), | ||
"box": inference_pred_i["pred_box"].cpu().detach().numpy().tolist(), | ||
"score": inference_pred_i["pred_score"] | ||
.cpu() | ||
.detach() | ||
.numpy() | ||
.tolist(), | ||
} | ||
result.update({"image": inference_img_filename}) | ||
results_dict["validation"].append(result) | ||
|
||
end_time = time.time() | ||
print("Testing time: ", end_time - start_time) | ||
|
||
with open(args.result_list_file_path, "w") as outfile: | ||
json.dump(results_dict, outfile, indent=4) | ||
|
||
|
||
if __name__ == "__main__": | ||
logging.basicConfig( | ||
stream=sys.stdout, | ||
level=logging.INFO, | ||
format="[%(asctime)s.%(msecs)03d][%(levelname)5s](%(name)s) - %(message)s", | ||
datefmt="%Y-%m-%d %H:%M:%S", | ||
) | ||
main() |
Oops, something went wrong.