|
| 1 | +#include <bits/stdc++.h> |
| 2 | +using namespace std; |
| 3 | + |
| 4 | +/// bellman ford algorithm |
| 5 | +/// given directed edges with real value weights and a source node |
| 6 | +/// return cost an path from source node to every other node |
| 7 | +/// or find the nodes in a negative cycle |
| 8 | +/// works when nodes disconnected from source exists |
| 9 | + |
| 10 | +/// in: |
| 11 | +/// [number of nodes] [number of edges] |
| 12 | +/// [source node] |
| 13 | +/// (for each edge) [from node] [to node] [integer cost] |
| 14 | + |
| 15 | +/** |
| 16 | +in: |
| 17 | +5 3 |
| 18 | +1 |
| 19 | +1 2 10 |
| 20 | +1 3 20 |
| 21 | +4 5 30 |
| 22 | +
|
| 23 | +out: |
| 24 | +1, cost: 0, path: 1 |
| 25 | +2, cost: 10, path: 1 2 |
| 26 | +3, cost: 20, path: 1 3 |
| 27 | +4 unreachable |
| 28 | +5 unreachable |
| 29 | +
|
| 30 | +in: |
| 31 | +5 6 |
| 32 | +1 |
| 33 | +1 2 1 |
| 34 | +2 3 10 |
| 35 | +3 1 10 |
| 36 | +2 4 1 |
| 37 | +4 5 0 |
| 38 | +5 3 0 |
| 39 | +
|
| 40 | +out: |
| 41 | +1, cost: 0, path: 1 |
| 42 | +2, cost: 1, path: 1 2 |
| 43 | +3, cost: 2, path: 1 2 4 5 3 |
| 44 | +4, cost: 2, path: 1 2 4 |
| 45 | +5, cost: 2, path: 1 2 4 5 |
| 46 | +
|
| 47 | +in: |
| 48 | +5 5 |
| 49 | +1 |
| 50 | +1 2 10 |
| 51 | +2 3 10 |
| 52 | +2 4 -1 |
| 53 | +4 5 -1 |
| 54 | +5 2 -1 |
| 55 | +
|
| 56 | +out: |
| 57 | +cycle detected |
| 58 | +2 4 5 |
| 59 | +
|
| 60 | +g++ -std=c++20 bellman_ford.cpp -o k |
| 61 | +*/ |
| 62 | +int main () { |
| 63 | + int n_nodes, n_edges, i_source; |
| 64 | + std::cin >> n_nodes >> n_edges >> i_source; |
| 65 | + i_source--; |
| 66 | + |
| 67 | + // initialize distances to infinity except source node |
| 68 | + std::vector<int> distances(n_nodes, std::numeric_limits<int>::max()); |
| 69 | + distances[i_source] = 0; |
| 70 | + |
| 71 | + // initialize predecessor |
| 72 | + std::vector<int> predecessors(n_nodes, -1); |
| 73 | + |
| 74 | + // initialize adjacency matrix with costs to edges |
| 75 | + // adj[from] = {to, cost} |
| 76 | + std::vector<std::vector<std::pair<int,int>>> adj(n_nodes); |
| 77 | + int i_from, i_to, cost; |
| 78 | + for (int j = 0; j < n_edges; j++) { |
| 79 | + std::cin >> i_from >> i_to >> cost; |
| 80 | + i_from--; i_to--; |
| 81 | + adj[i_from].push_back(std::make_pair(i_to, cost)); |
| 82 | + } |
| 83 | + |
| 84 | + // compute distances and predecessors |
| 85 | + int new_cost; |
| 86 | + for (int k = 0; k < n_nodes - 1; k++) { |
| 87 | + // iterate through each edge |
| 88 | + for (int i_from = 0; i_from < n_nodes; i_from++) { |
| 89 | + for (auto [i_to, cost] : adj[i_from]) { |
| 90 | + |
| 91 | + if (distances[i_from] < std::numeric_limits<int>::max()) { |
| 92 | + new_cost = distances[i_from] + cost; |
| 93 | + } else { |
| 94 | + new_cost = std::numeric_limits<int>::max(); |
| 95 | + } |
| 96 | + |
| 97 | + if(new_cost < distances[i_to]) { |
| 98 | + // reassign distance and predessor because we found a shorter route |
| 99 | + distances[i_to] = new_cost; |
| 100 | + predecessors[i_to] = i_from; |
| 101 | + } |
| 102 | + } |
| 103 | + } |
| 104 | + } |
| 105 | + |
| 106 | + // detect negative cycles |
| 107 | + bool has_cycle = false; |
| 108 | + int i_cycle_candidate; |
| 109 | + for (int i_from = 0; i_from < n_nodes; i_from++) { |
| 110 | + for (auto [i_to, cost] : adj[i_from]) { |
| 111 | + |
| 112 | + if (distances[i_from] < std::numeric_limits<int>::max()) { |
| 113 | + new_cost = distances[i_from] + cost; |
| 114 | + } else { |
| 115 | + new_cost = std::numeric_limits<int>::max(); |
| 116 | + } |
| 117 | + |
| 118 | + if(new_cost < distances[i_to]) { |
| 119 | + // cycle is detected, get candidates for cycle |
| 120 | + has_cycle = true; |
| 121 | + i_cycle_candidate = i_to; |
| 122 | + } |
| 123 | + } |
| 124 | + } |
| 125 | + |
| 126 | + if (has_cycle) { |
| 127 | + // find a node in cycle |
| 128 | + std::vector<bool> visited(n_nodes, false); |
| 129 | + visited[i_cycle_candidate] = true; |
| 130 | + int j = predecessors[i_cycle_candidate]; |
| 131 | + while (!visited[j]) { |
| 132 | + visited[j] = true; |
| 133 | + j = predecessors[j]; |
| 134 | + } |
| 135 | + |
| 136 | + // find nodes in cycle |
| 137 | + int i_in_cycle = j; |
| 138 | + std::vector<int> cycle = {i_in_cycle}; |
| 139 | + cycle.reserve(n_nodes); |
| 140 | + j = predecessors[i_in_cycle]; |
| 141 | + while (j != i_in_cycle) { |
| 142 | + cycle.push_back(j); |
| 143 | + j = predecessors[j]; |
| 144 | + } |
| 145 | + |
| 146 | + // print cycle |
| 147 | + std::cout << "cycle detected\n"; |
| 148 | + for (int i : cycle | std::views::reverse) { |
| 149 | + std::cout << i+1 << " "; |
| 150 | + } |
| 151 | + std::cout << std::endl; |
| 152 | + } else { |
| 153 | + // print cost and path to each node from source |
| 154 | + std::vector<int> path; |
| 155 | + path.reserve(n_nodes); |
| 156 | + for (int i = 0; i < n_nodes; i++) { |
| 157 | + if (distances[i] < std::numeric_limits<int>::max()) { |
| 158 | + // path from i_source to i exists with finite distance |
| 159 | + std::cout << i+1 << ", cost: " << distances[i]; |
| 160 | + |
| 161 | + // get the path from i_source to i |
| 162 | + path = {i}; |
| 163 | + int j = i; |
| 164 | + while (j != i_source) { |
| 165 | + j = predecessors[j]; |
| 166 | + path.push_back(j); |
| 167 | + }; |
| 168 | + |
| 169 | + // print out the path from i_source to i |
| 170 | + std::cout << ", path: "; |
| 171 | + for (int j : path | std::views::reverse) { |
| 172 | + std::cout << j+1 << " "; |
| 173 | + } |
| 174 | + std::cout << std::endl; |
| 175 | + } else { |
| 176 | + // no path from i_source to i |
| 177 | + std::cout << i+1 << " unreachable\n"; |
| 178 | + } |
| 179 | + } |
| 180 | + } |
| 181 | + |
| 182 | + return 0; |
| 183 | +} |
| 184 | + |
0 commit comments