You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Evaluate the Firefly Algorithm on one or more test functions
66
+
67
+
options:
68
+
-h, --help show this help message and exit
69
+
--problem PROBLEM Test problem to evaluate
70
+
-d DIMENSION, --dimension DIMENSION
71
+
Dimension of the problem
72
+
-l LOWER, --lower LOWER
73
+
Lower bounds of the problem
74
+
-u UPPER, --upper UPPER
75
+
Upper bounds of the problem
76
+
-nfes MAX_EVALS, --max-evals MAX_EVALS
77
+
Max number of fitness function evaluations
78
+
-r RUNS, --runs RUNS Number of runs of the algorithm
79
+
--pop-size POP_SIZE Population size
80
+
--alpha ALPHA Randomness strength
81
+
--beta-min BETA_MIN Attractiveness constant
82
+
--gamma GAMMA Absorption coefficient
83
+
--seed SEED Seed for the random number generator
84
+
```
85
+
86
+
**Note:** The CLI script can also run as a python module (python -m niaarm ...)
87
+
88
+
56
89
## Reference Papers:
57
90
58
91
I. Fister Jr., X.-S. Yang, I. Fister, J. Brest. [Memetic firefly algorithm for combinatorial optimization](http://www.iztok-jr-fister.eu/static/publications/44.pdf) in Bioinspired Optimization Methods and their Applications (BIOMA 2012), B. Filipic and J.Silc, Eds.
0 commit comments