Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 20 additions & 30 deletions firedrake/adjoint_utils/blocks/function.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,48 +57,38 @@ def evaluate_adj_component(self, inputs, adj_inputs, block_variable, idx,
# Catch the case where adj_inputs[0] is just a float
return adj_inputs[0]
elif isconstant(block_variable.output):
R = block_variable.output._ad_function_space(
prepared.function_space().mesh()
adj_output = self._adj_assign_constant(
prepared, block_variable.output.function_space()
)
return self._adj_assign_constant(prepared, R)
else:
adj_output = firedrake.Function(
block_variable.output.function_space())
block_variable.output.function_space()
)
adj_output.assign(prepared)
adj_output = adj_output.riesz_representation(riesz_map="l2")
return adj_output
return adj_output.riesz_representation(riesz_map="l2")
else:
# Linear combination
expr, adj_input_func = prepared
adj_output = firedrake.Function(adj_input_func.function_space())
if not isconstant(block_variable.output):
diff_expr = ufl.algorithms.expand_derivatives(
ufl.derivative(
expr, block_variable.saved_output, adj_input_func
)
if isconstant(block_variable.output):
R = block_variable.output._ad_function_space(
adj_input_func.function_space().mesh()
)
# Firedrake does not support assignment of conjugate functions
adj_output.interpolate(ufl.conj(diff_expr))
adj_output = adj_output.riesz_representation(riesz_map="l2")
else:
mesh = adj_output.function_space().mesh()
diff_expr = ufl.algorithms.expand_derivatives(
ufl.derivative(
expr,
block_variable.saved_output,
firedrake.Constant(1., domain=mesh)
)
ufl.derivative(expr, block_variable.saved_output,
firedrake.Function(R, val=1.0))
)
adj_output.assign(diff_expr)
return adj_output.dat.inner(adj_input_func.dat)

if isconstant(block_variable.output):
R = block_variable.output._ad_function_space(
adj_output.function_space().mesh()
diff_expr_assembled = firedrake.Function(adj_input_func.function_space())
diff_expr_assembled.interpolate(ufl.conj(diff_expr))
adj_output = firedrake.Function(
R, val=firedrake.assemble(ufl.Action(diff_expr_assembled, adj_input_func))
)
return self._adj_assign_constant(adj_output, R)
else:
return adj_output
adj_output = firedrake.Function(adj_input_func.function_space())
diff_expr = ufl.algorithms.expand_derivatives(
ufl.derivative(expr, block_variable.saved_output, adj_input_func)
)
adj_output.interpolate(ufl.conj(diff_expr))
return adj_output.riesz_representation(riesz_map="l2")

def _adj_assign_constant(self, adj_output, constant_fs):
r = firedrake.Function(constant_fs)
Expand Down
40 changes: 20 additions & 20 deletions firedrake/adjoint_utils/function.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@
import firedrake
from .checkpointing import disk_checkpointing, CheckpointFunction, \
CheckpointBase, checkpoint_init_data, DelegatedFunctionCheckpoint
from numbers import Number


class FunctionMixin(FloatingType):
Expand Down Expand Up @@ -224,26 +223,27 @@ def _ad_create_checkpoint(self):
def _ad_convert_riesz(self, value, options=None):
from firedrake import Function, Cofunction

options = {} if options is None else options
riesz_representation = options.get("riesz_representation", "l2")
solver_options = options.get("solver_options", {})
V = options.get("function_space", self.function_space())
if value == 0.:
# In adjoint-based differentiation, value == 0. arises only when
# the functional is independent on the control variable.
# In this case, we do not apply the Riesz map and return a zero
# Cofunction.
return Cofunction(V.dual())

if riesz_representation != "l2" and not isinstance(value, Cofunction):
raise TypeError("Expected a Cofunction")
elif not isinstance(value, (Number, Cofunction, Function)):
raise TypeError("Expected a Cofunction, Function or a float")
options = {} if options is None else options
riesz_representation = options.get("riesz_representation", "L2")
solver_options = options.get("solver_options", {})
if not isinstance(value, (Cofunction, Function)):
raise TypeError("Expected a Cofunction or a Function")

if riesz_representation == "l2":
if isinstance(value, (Cofunction, Function)):
return Function(V, val=value.dat)
else:
f = Function(V)
with stop_annotating():
f.assign(value)
return f
return Function(V, val=value.dat)

elif riesz_representation in ("L2", "H1"):
if not isinstance(value, Cofunction):
raise TypeError("Expected a Cofunction")

ret = Function(V)
a = self._define_riesz_map_form(riesz_representation, V)
firedrake.solve(a == value, ret, **solver_options)
Expand All @@ -253,7 +253,7 @@ def _ad_convert_riesz(self, value, options=None):
return riesz_representation(value)

else:
raise NotImplementedError(
raise ValueError(
"Unknown Riesz representation %s" % riesz_representation)

def _define_riesz_map_form(self, riesz_representation, V):
Expand All @@ -276,9 +276,9 @@ def _define_riesz_map_form(self, riesz_representation, V):
@no_annotations
def _ad_convert_type(self, value, options=None):
# `_ad_convert_type` is not annotated, unlike `_ad_convert_riesz`
options = {} if options is None else options
riesz_representation = options.get("riesz_representation", "L2")
if riesz_representation is None:
options = {} if options is None else options.copy()
options.setdefault("riesz_representation", "L2")
if options["riesz_representation"] is None:
return value
else:
return self._ad_convert_riesz(value, options=options)
Expand Down Expand Up @@ -317,7 +317,7 @@ def _ad_dot(self, other, options=None):
from firedrake import assemble

options = {} if options is None else options
riesz_representation = options.get("riesz_representation", "l2")
riesz_representation = options.get("riesz_representation", "L2")
if riesz_representation == "l2":
return self.dat.inner(other.dat)
elif riesz_representation == "L2":
Expand Down
2 changes: 1 addition & 1 deletion firedrake/ml/pytorch/fem_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ def backward(ctx, grad_output):
adj_input = float(adj_input)

# Compute adjoint model of `F`: delegated to pyadjoint.ReducedFunctional
adj_output = F.derivative(adj_input=adj_input)
adj_output = F.derivative(adj_input=adj_input, options={"riesz_representation": "l2"})

# Tuplify adjoint output
adj_output = (adj_output,) if not isinstance(adj_output, collections.abc.Sequence) else adj_output
Expand Down
46 changes: 38 additions & 8 deletions tests/regression/test_adjoint_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -889,13 +889,43 @@ def test_cofunction_subfunctions_with_adjoint():


@pytest.mark.skipcomplex # Taping for complex-valued 0-forms not yet done
def test_none_riesz_representation_to_derivative():
def test_riesz_representation_for_adjoints():
# Check if the Riesz representation norms for adjoints are working as expected.
mesh = UnitIntervalMesh(1)
space = FunctionSpace(mesh, "Lagrange", 1)
u = Function(space).interpolate(SpatialCoordinate(mesh)[0])
J = assemble((u ** 2) * dx)
rf = ReducedFunctional(J, Control(u))
assert isinstance(rf.derivative(), Function)
assert isinstance(rf.derivative(options={"riesz_representation": "H1"}), Function)
assert isinstance(rf.derivative(options={"riesz_representation": "L2"}), Function)
assert isinstance(rf.derivative(options={"riesz_representation": None}), Cofunction)
f = Function(space).interpolate(SpatialCoordinate(mesh)[0])
J = assemble((f ** 2) * dx)
rf = ReducedFunctional(J, Control(f))
with stop_annotating():
v = TestFunction(space)
u = TrialFunction(space)
dJdu_cofunction = assemble(derivative((f ** 2) * dx, f, v))

# Riesz representation with l2
dJdu_function_l2 = Function(space, val=dJdu_cofunction.dat)

# Riesz representation with H1
a = u * v * dx + inner(grad(u), grad(v)) * dx
dJdu_function_H1 = Function(space)
solve(a == dJdu_cofunction, dJdu_function_H1)

# Riesz representation with L2
a = u*v*dx
dJdu_function_L2 = Function(space)
solve(a == dJdu_cofunction, dJdu_function_L2)

dJdu_none = rf.derivative(options={"riesz_representation": None})
dJdu_l2 = rf.derivative(options={"riesz_representation": "l2"})
dJdu_H1 = rf.derivative(options={"riesz_representation": "H1"})
dJdu_L2 = rf.derivative(options={"riesz_representation": "L2"})
dJdu_default_L2 = rf.derivative()
assert (
isinstance(dJdu_none, Cofunction) and isinstance(dJdu_function_l2, Function)
and isinstance(dJdu_H1, Function) and isinstance(dJdu_default_L2, Function)
and isinstance(dJdu_L2, Function)
and np.allclose(dJdu_none.dat.data, dJdu_cofunction.dat.data)
and np.allclose(dJdu_l2.dat.data, dJdu_function_l2.dat.data)
and np.allclose(dJdu_H1.dat.data, dJdu_function_H1.dat.data)
and np.allclose(dJdu_default_L2.dat.data, dJdu_function_L2.dat.data)
and np.allclose(dJdu_L2.dat.data, dJdu_function_L2.dat.data)
)