Skip to content

Commit d7d1a59

Browse files
committed
README
1 parent f3a1380 commit d7d1a59

File tree

1 file changed

+41
-41
lines changed

1 file changed

+41
-41
lines changed

README.md

+41-41
Original file line numberDiff line numberDiff line change
@@ -2,66 +2,66 @@
22

33
## Backbones
44

5-
- [x] `AlexNet` - [ImageNet Classification with Deep Convolutional Neural Networks](https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf), NeurIPS, 2012
6-
- [x] `VGGNets` - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556), 2014
7-
- [x] `GoogLeNet` - [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842), 2014
8-
- [x] `Inception-V3` - [Rethinking the Inception Architecture for Computer Vision](https://arxiv.org/abs/1512.00567), 2015
9-
- [x] `Inception-V4 and Inception-ResNet` - [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261), AAAI, 2016
10-
- [x] `ResNet` - [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385), 2015
11-
- [x] `SqueezeNet` - [SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size](https://arxiv.org/abs/1602.07360), 2016
12-
- [x] `ResNeXt` - [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431), CVPR, 2016
5+
- [x] [`AlexNet`](cvm/models/alexnet.py) - [ImageNet Classification with Deep Convolutional Neural Networks](https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf), NeurIPS, 2012
6+
- [x] [`VGGNets`](cvm/models/vggnet.py) - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556), 2014
7+
- [x] [`GoogLeNet`](cvm/models/googlenet.py) - [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842), 2014
8+
- [x] [`Inception-V3`](cvm/models/inception_v3.py) - [Rethinking the Inception Architecture for Computer Vision](https://arxiv.org/abs/1512.00567), 2015
9+
- [x] [`Inception-V4 and Inception-ResNet`](cvm/models/inception_v4.py) - [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261), AAAI, 2016
10+
- [x] [`ResNet`](cvm/models/resnet.py) - [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385), 2015
11+
- [x] [`SqueezeNet`](cvm/models/squeezenet.py) - [SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size](https://arxiv.org/abs/1602.07360), 2016
12+
- [x] [`ResNeXt`](cvm/models/resnet.py) - [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431), CVPR, 2016
1313
- [ ] `Res2Net` - [Res2Net: A New Multi-scale Backbone Architecture](https://arxiv.org/abs/1904.01169), TPAMI, 2019
14-
- [x] `ReXNet` - [Rethinking Channel Dimensions for Efficient Model Design](https://arxiv.org/abs/2007.00992), CVPR, 2020
15-
- [x] `Xception` - [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357), CVPR, 2016
16-
- [x] `DenseNet` - [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993), CVPR, 2016
14+
- [x] [`ReXNet`](cvm/models/rexnet.py) - [Rethinking Channel Dimensions for Efficient Model Design](https://arxiv.org/abs/2007.00992), CVPR, 2020
15+
- [x] [`Xception`](cvm/models/xception.py) - [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357), CVPR, 2016
16+
- [x] [`DenseNet`](cvm/models/densenet.py) - [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993), CVPR, 2016
1717
- [ ] `DLA` - [Deep Layer Aggregation](https://arxiv.org/abs/1707.06484), CVPR, 2017
1818
- [ ] `DPN` - [Dual Path Networks](https://arxiv.org/abs/1707.01629), NeurIPS, 2017
1919
- [ ] `NASNet-A` - [Learning Transferable Architectures for Scalable Image Recognition](https://arxiv.org/abs/1707.07012), CVPR, 2017
2020
- [ ] `PNasNet` - [Progressive Neural Architecture Search](https://arxiv.org/abs/1712.00559), ECCV, 2017
21-
- [x] `MobileNets` - [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861), 2017
22-
- [x] `MobileNetV2` - [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381), CVPR, 2018
23-
- [x] `MobileNetV3` - [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244), ICCV, 2019
24-
- [x] `ShuffleNet` - [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](https://arxiv.org/abs/1707.01083), CVPR, 2017
25-
- [x] `ShuffleNet V2` - [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164), ECCV, 2018
26-
- [x] `MnasNet` - [MnasNet: Platform-Aware Neural Architecture Search for Mobile](https://arxiv.org/abs/1807.11626), CVPR, 2018
27-
- [x] `GhostNet` - [GhostNet: More Features from Cheap Operations](https://arxiv.org/abs/1911.11907), CVPR, 2019
21+
- [x] [`MobileNets`](cvm/models/mobilenet.py) - [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861), 2017
22+
- [x] [`MobileNetV2`](cvm/models/mobilenetv2.py) - [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381), CVPR, 2018
23+
- [x] [`MobileNetV3`](cvm/models/mobilenetv3.py) - [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244), ICCV, 2019
24+
- [x] [`ShuffleNet`](cvm/models/shufflenet.py) - [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](https://arxiv.org/abs/1707.01083), CVPR, 2017
25+
- [x] [`ShuffleNetV2`](cvm/models/shufflenetv2.py) - [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164), ECCV, 2018
26+
- [x] [`MnasNet`](cvm/models/mnasnet.py) - [MnasNet: Platform-Aware Neural Architecture Search for Mobile](https://arxiv.org/abs/1807.11626), CVPR, 2018
27+
- [x] [`GhostNet`](cvm/models/ghostnet.py) - [GhostNet: More Features from Cheap Operations](https://arxiv.org/abs/1911.11907), CVPR, 2019
2828
- [ ] `HRNet` - [Deep High-Resolution Representation Learning for Visual Recognition](https://arxiv.org/abs/1908.07919), TPAMI, 2019
2929
- [ ] `CSPNet` - [CSPNet: A New Backbone that can Enhance Learning Capability of CNN](https://arxiv.org/abs/1911.11929), CVPR, 2019
30-
- [x] `EfficientNet` - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946), ICML, 2019
31-
- [x] `EfficientNetV2` - [EfficientNetV2: Smaller Models and Faster Training](https://arxiv.org/abs/2104.00298), ICML, 2021
32-
- [x] `RegNet` - [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678), CVPR, 2020
30+
- [x] [`EfficientNet`](cvm/models/efficientnet.py) - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946), ICML, 2019
31+
- [x] [`EfficientNetV2`](cvm/models/efficientnetv2.py) - [EfficientNetV2: Smaller Models and Faster Training](https://arxiv.org/abs/2104.00298), ICML, 2021
32+
- [x] [`RegNet`](cvm/models/regnet.py) - [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678), CVPR, 2020
3333
- [ ] `GPU-EfficientNets` - [Neural Architecture Design for GPU-Efficient Networks](https://arxiv.org/abs/2006.14090), 2020
3434
- [ ] `LambdaNetworks` - [LambdaNetworks: Modeling Long-Range Interactions Without Attention](https://arxiv.org/abs/2102.08602), ICLR, 2021
3535
- [ ] `RepVGG` - [RepVGG: Making VGG-style ConvNets Great Again](https://arxiv.org/abs/2101.03697), CVPR, 2021
3636
- [ ] `HardCoRe-NAS` - [HardCoRe-NAS: Hard Constrained diffeRentiable Neural Architecture Search](https://arxiv.org/abs/2102.11646), ICML, 2021
3737
- [ ] `NFNet` - [High-Performance Large-Scale Image Recognition Without Normalization](https://arxiv.org/abs/2102.06171), ICML, 2021
3838
- [ ] `NF-ResNets` - [Characterizing signal propagation to close the performance gap in unnormalized ResNets](https://arxiv.org/abs/2101.08692), ICLR, 2021
39-
- [x] `ConvMixer` - [Patches are all you need?](https://openreview.net/forum?id=TVHS5Y4dNvM), 2021
40-
- [x] `ConvNeXt` - [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545), CVPR, 2022
39+
- [x] [`ConvMixer`](cvm/models/convmixer.py) - [Patches are all you need?](https://openreview.net/forum?id=TVHS5Y4dNvM), 2021
40+
- [x] [`ConvNeXt`](cvm/models/convnext.py) - [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545), CVPR, 2022
4141

4242
### Attention Blocks
4343

44-
- [x] `Non-Local` - [Non-local Neural Networks](https://arxiv.org/abs/1711.07971), CVPR, 2017
45-
- [x] `Squeeze-and-Excitation` - [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507), CVPR, 2017
46-
- [x] `Gather-Excite` - [Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks](https://arxiv.org/abs/1810.12348), NeurIPS, 2018
47-
- [x] `CBAM` - [CBAM: Convolutional Block Attention Module](https://arxiv.org/abs/1807.06521), ECCV, 2018
48-
- [x] `SelectiveKernel` - [Selective Kernel Networks](https://arxiv.org/abs/1903.06586), CVPR, 2019
49-
- [x] `ECA` - [ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks](https://arxiv.org/abs/1910.03151), CVPR, 2019
50-
- [x] `GlobalContext` - [GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond](https://arxiv.org/abs/1904.11492), 2019
44+
- [x] [`Non-Local`](cvm/models/ops/blocks/non_local.py) - [Non-local Neural Networks](https://arxiv.org/abs/1711.07971), CVPR, 2017
45+
- [x] [`Squeeze-and-Excitation`](cvm/models/ops/blocks/squeeze_excite.py) - [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507), CVPR, 2017
46+
- [x] [`Gather-Excite`](cvm/models/ops/blocks/gather_excite.py) - [Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks](https://arxiv.org/abs/1810.12348), NeurIPS, 2018
47+
- [x] [`CBAM`](cvm/models/ops/blocks/cbam.py) - [CBAM: Convolutional Block Attention Module](https://arxiv.org/abs/1807.06521), ECCV, 2018
48+
- [x] [`SelectiveKernel`](cvm/models/ops/blocks/selective_kernel.py) - [Selective Kernel Networks](https://arxiv.org/abs/1903.06586), CVPR, 2019
49+
- [x] [`ECA`](cvm/models/ops/blocks/efficient_channel_attention.py) - [ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks](https://arxiv.org/abs/1910.03151), CVPR, 2019
50+
- [x] [`GlobalContext`](cvm/models/ops/blocks/global_context.py) - [GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond](https://arxiv.org/abs/1904.11492), 2019
5151
- [ ] `ResNeSt` - [ResNeSt: Split-Attention Networks](https://arxiv.org/abs/2004.08955), 2020
5252
- [ ] `HaloNets` - [Scaling Local Self-Attention for Parameter Efficient Visual Backbones](https://arxiv.org/abs/2103.12731), 2021
5353

5454
### Transformer
5555

56-
- [x] `ViT` - [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929), ICLR, 2020
56+
- [x] [`ViT`](cvm/models/vision_transformer.py) - [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929), ICLR, 2020
5757
- [ ] `DeiT` - [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877), ICML, 2020
5858
- [ ] `Swin Transformer` - [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030), ICCV, 2021
5959
- [ ] `Twins` - [Twins: Revisiting the Design of Spatial Attention in Vision Transformers](https://arxiv.org/abs/2104.13840), NeurIPS, 2021
6060

6161
### MLP
6262

63-
- [x] `MLP-Mixer` - [MLP-Mixer: An all-MLP Architecture for Vision](https://arxiv.org/abs/2105.01601), NeurIPS, 2021
64-
- [x] `ResMLP` - [ResMLP: Feedforward networks for image classification with data-efficient training](https://arxiv.org/abs/2105.03404), 2021
63+
- [x] [`MLP-Mixer`](cvm/models/mlp_mixer.py) - [MLP-Mixer: An all-MLP Architecture for Vision](https://arxiv.org/abs/2105.01601), NeurIPS, 2021
64+
- [x] [`ResMLP`](cvm/models/resmlp.py) - [ResMLP: Feedforward networks for image classification with data-efficient training](https://arxiv.org/abs/2105.03404), 2021
6565
- [ ] `gMLP` - [Pay Attention to MLPs](https://arxiv.org/abs/2105.08050), 2021
6666

6767
### Self-supervised
@@ -79,24 +79,24 @@
7979

8080
## Semantic Segmentation
8181

82-
- [x] `FCN` - [Fully Convolutional Networks for Semantic Segmentation](https://arxiv.org/abs/1411.4038), CVPR, 2014
83-
- [x] `UNet` - [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597), MICCAI, 2015
82+
- [x] [`FCN`](cvm/models/seg/fcn.py) - [Fully Convolutional Networks for Semantic Segmentation](https://arxiv.org/abs/1411.4038), CVPR, 2014
83+
- [x] [`UNet`](cvm/models/seg/unet.py) - [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597), MICCAI, 2015
8484
- [ ] `PSPNet` - [Pyramid Scene Parsing Network](https://arxiv.org/abs/1612.01105), CVPR, 2016
85-
- [x] `DeepLabv3` - [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/pdf/1706.05587.pdf), 2017
86-
- [x] `DeepLabv3+` - [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/pdf/1802.02611.pdf), CVPR, 2018
85+
- [x] [`DeepLabv3`](cvm/models/seg/deeplabv3.py) - [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/pdf/1706.05587.pdf), 2017
86+
- [x] [`DeepLabv3+`](cvm/models/seg/deeplabv3_plus.py) - [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/pdf/1802.02611.pdf), CVPR, 2018
8787
- [ ] `Mask R-CNN` - [Mask R-CNN](https://arxiv.org/abs/1703.06870), 2017
8888

8989
## Generative Models
9090

9191
### GANs
9292

9393
- [x] `GAN` - [Generative Adversarial Networks](https://arxiv.org/abs/1406.2661), 2014
94-
- [x] `DCGAN` - [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434), ICLR, 2016
94+
- [x] [`DCGAN`](cvm/models/gan/dcgan.py) - [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434), ICLR, 2016
9595
- [ ] `WGAN` - [Wasserstein GAN](https://arxiv.org/abs/1701.07875), 2017
9696

9797
### VAEs
9898

99-
- [x] `VAE` - [Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114), 2013
99+
- [x] [`VAE`](cvm/models/vae/vae.py) - [Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114), 2013
100100
- [ ] `β-VAE` - [beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework](https://openreview.net/forum?id=Sy2fzU9gl), ICLR, 2017
101101

102102

@@ -108,5 +108,5 @@
108108

109109
## Adversarial Attacks
110110

111-
- [x] `FGSM` - [Explaining and Harnessing Adversarial Examples](https://arxiv.org/abs/1412.6572), ICLR, 2014
112-
- [x] `PGD` - [Towards Deep Learning Models Resistant to Adversarial Attacks](https://arxiv.org/abs/1706.06083), ICLR, 2017
111+
- [x] [`FGSM`](cvm/attacks/fgsm.py) - [Explaining and Harnessing Adversarial Examples](https://arxiv.org/abs/1412.6572), ICLR, 2014
112+
- [x] [`PGD`](cvm/attacks/pgd.py) - [Towards Deep Learning Models Resistant to Adversarial Attacks](https://arxiv.org/abs/1706.06083), ICLR, 2017

0 commit comments

Comments
 (0)