|
2 | 2 |
|
3 | 3 | ## Backbones
|
4 | 4 |
|
5 |
| -- [x] `AlexNet` - [ImageNet Classification with Deep Convolutional Neural Networks](https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf), NeurIPS, 2012 |
6 |
| -- [x] `VGGNets` - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556), 2014 |
7 |
| -- [x] `GoogLeNet` - [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842), 2014 |
8 |
| -- [x] `Inception-V3` - [Rethinking the Inception Architecture for Computer Vision](https://arxiv.org/abs/1512.00567), 2015 |
9 |
| -- [x] `Inception-V4 and Inception-ResNet` - [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261), AAAI, 2016 |
10 |
| -- [x] `ResNet` - [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385), 2015 |
11 |
| -- [x] `SqueezeNet` - [SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size](https://arxiv.org/abs/1602.07360), 2016 |
12 |
| -- [x] `ResNeXt` - [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431), CVPR, 2016 |
| 5 | +- [x] [`AlexNet`](cvm/models/alexnet.py) - [ImageNet Classification with Deep Convolutional Neural Networks](https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf), NeurIPS, 2012 |
| 6 | +- [x] [`VGGNets`](cvm/models/vggnet.py) - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556), 2014 |
| 7 | +- [x] [`GoogLeNet`](cvm/models/googlenet.py) - [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842), 2014 |
| 8 | +- [x] [`Inception-V3`](cvm/models/inception_v3.py) - [Rethinking the Inception Architecture for Computer Vision](https://arxiv.org/abs/1512.00567), 2015 |
| 9 | +- [x] [`Inception-V4 and Inception-ResNet`](cvm/models/inception_v4.py) - [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261), AAAI, 2016 |
| 10 | +- [x] [`ResNet`](cvm/models/resnet.py) - [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385), 2015 |
| 11 | +- [x] [`SqueezeNet`](cvm/models/squeezenet.py) - [SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size](https://arxiv.org/abs/1602.07360), 2016 |
| 12 | +- [x] [`ResNeXt`](cvm/models/resnet.py) - [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431), CVPR, 2016 |
13 | 13 | - [ ] `Res2Net` - [Res2Net: A New Multi-scale Backbone Architecture](https://arxiv.org/abs/1904.01169), TPAMI, 2019
|
14 |
| -- [x] `ReXNet` - [Rethinking Channel Dimensions for Efficient Model Design](https://arxiv.org/abs/2007.00992), CVPR, 2020 |
15 |
| -- [x] `Xception` - [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357), CVPR, 2016 |
16 |
| -- [x] `DenseNet` - [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993), CVPR, 2016 |
| 14 | +- [x] [`ReXNet`](cvm/models/rexnet.py) - [Rethinking Channel Dimensions for Efficient Model Design](https://arxiv.org/abs/2007.00992), CVPR, 2020 |
| 15 | +- [x] [`Xception`](cvm/models/xception.py) - [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357), CVPR, 2016 |
| 16 | +- [x] [`DenseNet`](cvm/models/densenet.py) - [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993), CVPR, 2016 |
17 | 17 | - [ ] `DLA` - [Deep Layer Aggregation](https://arxiv.org/abs/1707.06484), CVPR, 2017
|
18 | 18 | - [ ] `DPN` - [Dual Path Networks](https://arxiv.org/abs/1707.01629), NeurIPS, 2017
|
19 | 19 | - [ ] `NASNet-A` - [Learning Transferable Architectures for Scalable Image Recognition](https://arxiv.org/abs/1707.07012), CVPR, 2017
|
20 | 20 | - [ ] `PNasNet` - [Progressive Neural Architecture Search](https://arxiv.org/abs/1712.00559), ECCV, 2017
|
21 |
| -- [x] `MobileNets` - [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861), 2017 |
22 |
| -- [x] `MobileNetV2` - [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381), CVPR, 2018 |
23 |
| -- [x] `MobileNetV3` - [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244), ICCV, 2019 |
24 |
| -- [x] `ShuffleNet` - [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](https://arxiv.org/abs/1707.01083), CVPR, 2017 |
25 |
| -- [x] `ShuffleNet V2` - [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164), ECCV, 2018 |
26 |
| -- [x] `MnasNet` - [MnasNet: Platform-Aware Neural Architecture Search for Mobile](https://arxiv.org/abs/1807.11626), CVPR, 2018 |
27 |
| -- [x] `GhostNet` - [GhostNet: More Features from Cheap Operations](https://arxiv.org/abs/1911.11907), CVPR, 2019 |
| 21 | +- [x] [`MobileNets`](cvm/models/mobilenet.py) - [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861), 2017 |
| 22 | +- [x] [`MobileNetV2`](cvm/models/mobilenetv2.py) - [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381), CVPR, 2018 |
| 23 | +- [x] [`MobileNetV3`](cvm/models/mobilenetv3.py) - [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244), ICCV, 2019 |
| 24 | +- [x] [`ShuffleNet`](cvm/models/shufflenet.py) - [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](https://arxiv.org/abs/1707.01083), CVPR, 2017 |
| 25 | +- [x] [`ShuffleNetV2`](cvm/models/shufflenetv2.py) - [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164), ECCV, 2018 |
| 26 | +- [x] [`MnasNet`](cvm/models/mnasnet.py) - [MnasNet: Platform-Aware Neural Architecture Search for Mobile](https://arxiv.org/abs/1807.11626), CVPR, 2018 |
| 27 | +- [x] [`GhostNet`](cvm/models/ghostnet.py) - [GhostNet: More Features from Cheap Operations](https://arxiv.org/abs/1911.11907), CVPR, 2019 |
28 | 28 | - [ ] `HRNet` - [Deep High-Resolution Representation Learning for Visual Recognition](https://arxiv.org/abs/1908.07919), TPAMI, 2019
|
29 | 29 | - [ ] `CSPNet` - [CSPNet: A New Backbone that can Enhance Learning Capability of CNN](https://arxiv.org/abs/1911.11929), CVPR, 2019
|
30 |
| -- [x] `EfficientNet` - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946), ICML, 2019 |
31 |
| -- [x] `EfficientNetV2` - [EfficientNetV2: Smaller Models and Faster Training](https://arxiv.org/abs/2104.00298), ICML, 2021 |
32 |
| -- [x] `RegNet` - [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678), CVPR, 2020 |
| 30 | +- [x] [`EfficientNet`](cvm/models/efficientnet.py) - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946), ICML, 2019 |
| 31 | +- [x] [`EfficientNetV2`](cvm/models/efficientnetv2.py) - [EfficientNetV2: Smaller Models and Faster Training](https://arxiv.org/abs/2104.00298), ICML, 2021 |
| 32 | +- [x] [`RegNet`](cvm/models/regnet.py) - [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678), CVPR, 2020 |
33 | 33 | - [ ] `GPU-EfficientNets` - [Neural Architecture Design for GPU-Efficient Networks](https://arxiv.org/abs/2006.14090), 2020
|
34 | 34 | - [ ] `LambdaNetworks` - [LambdaNetworks: Modeling Long-Range Interactions Without Attention](https://arxiv.org/abs/2102.08602), ICLR, 2021
|
35 | 35 | - [ ] `RepVGG` - [RepVGG: Making VGG-style ConvNets Great Again](https://arxiv.org/abs/2101.03697), CVPR, 2021
|
36 | 36 | - [ ] `HardCoRe-NAS` - [HardCoRe-NAS: Hard Constrained diffeRentiable Neural Architecture Search](https://arxiv.org/abs/2102.11646), ICML, 2021
|
37 | 37 | - [ ] `NFNet` - [High-Performance Large-Scale Image Recognition Without Normalization](https://arxiv.org/abs/2102.06171), ICML, 2021
|
38 | 38 | - [ ] `NF-ResNets` - [Characterizing signal propagation to close the performance gap in unnormalized ResNets](https://arxiv.org/abs/2101.08692), ICLR, 2021
|
39 |
| -- [x] `ConvMixer` - [Patches are all you need?](https://openreview.net/forum?id=TVHS5Y4dNvM), 2021 |
40 |
| -- [x] `ConvNeXt` - [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545), CVPR, 2022 |
| 39 | +- [x] [`ConvMixer`](cvm/models/convmixer.py) - [Patches are all you need?](https://openreview.net/forum?id=TVHS5Y4dNvM), 2021 |
| 40 | +- [x] [`ConvNeXt`](cvm/models/convnext.py) - [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545), CVPR, 2022 |
41 | 41 |
|
42 | 42 | ### Attention Blocks
|
43 | 43 |
|
44 |
| -- [x] `Non-Local` - [Non-local Neural Networks](https://arxiv.org/abs/1711.07971), CVPR, 2017 |
45 |
| -- [x] `Squeeze-and-Excitation` - [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507), CVPR, 2017 |
46 |
| -- [x] `Gather-Excite` - [Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks](https://arxiv.org/abs/1810.12348), NeurIPS, 2018 |
47 |
| -- [x] `CBAM` - [CBAM: Convolutional Block Attention Module](https://arxiv.org/abs/1807.06521), ECCV, 2018 |
48 |
| -- [x] `SelectiveKernel` - [Selective Kernel Networks](https://arxiv.org/abs/1903.06586), CVPR, 2019 |
49 |
| -- [x] `ECA` - [ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks](https://arxiv.org/abs/1910.03151), CVPR, 2019 |
50 |
| -- [x] `GlobalContext` - [GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond](https://arxiv.org/abs/1904.11492), 2019 |
| 44 | +- [x] [`Non-Local`](cvm/models/ops/blocks/non_local.py) - [Non-local Neural Networks](https://arxiv.org/abs/1711.07971), CVPR, 2017 |
| 45 | +- [x] [`Squeeze-and-Excitation`](cvm/models/ops/blocks/squeeze_excite.py) - [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507), CVPR, 2017 |
| 46 | +- [x] [`Gather-Excite`](cvm/models/ops/blocks/gather_excite.py) - [Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks](https://arxiv.org/abs/1810.12348), NeurIPS, 2018 |
| 47 | +- [x] [`CBAM`](cvm/models/ops/blocks/cbam.py) - [CBAM: Convolutional Block Attention Module](https://arxiv.org/abs/1807.06521), ECCV, 2018 |
| 48 | +- [x] [`SelectiveKernel`](cvm/models/ops/blocks/selective_kernel.py) - [Selective Kernel Networks](https://arxiv.org/abs/1903.06586), CVPR, 2019 |
| 49 | +- [x] [`ECA`](cvm/models/ops/blocks/efficient_channel_attention.py) - [ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks](https://arxiv.org/abs/1910.03151), CVPR, 2019 |
| 50 | +- [x] [`GlobalContext`](cvm/models/ops/blocks/global_context.py) - [GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond](https://arxiv.org/abs/1904.11492), 2019 |
51 | 51 | - [ ] `ResNeSt` - [ResNeSt: Split-Attention Networks](https://arxiv.org/abs/2004.08955), 2020
|
52 | 52 | - [ ] `HaloNets` - [Scaling Local Self-Attention for Parameter Efficient Visual Backbones](https://arxiv.org/abs/2103.12731), 2021
|
53 | 53 |
|
54 | 54 | ### Transformer
|
55 | 55 |
|
56 |
| -- [x] `ViT` - [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929), ICLR, 2020 |
| 56 | +- [x] [`ViT`](cvm/models/vision_transformer.py) - [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929), ICLR, 2020 |
57 | 57 | - [ ] `DeiT` - [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877), ICML, 2020
|
58 | 58 | - [ ] `Swin Transformer` - [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030), ICCV, 2021
|
59 | 59 | - [ ] `Twins` - [Twins: Revisiting the Design of Spatial Attention in Vision Transformers](https://arxiv.org/abs/2104.13840), NeurIPS, 2021
|
60 | 60 |
|
61 | 61 | ### MLP
|
62 | 62 |
|
63 |
| -- [x] `MLP-Mixer` - [MLP-Mixer: An all-MLP Architecture for Vision](https://arxiv.org/abs/2105.01601), NeurIPS, 2021 |
64 |
| -- [x] `ResMLP` - [ResMLP: Feedforward networks for image classification with data-efficient training](https://arxiv.org/abs/2105.03404), 2021 |
| 63 | +- [x] [`MLP-Mixer`](cvm/models/mlp_mixer.py) - [MLP-Mixer: An all-MLP Architecture for Vision](https://arxiv.org/abs/2105.01601), NeurIPS, 2021 |
| 64 | +- [x] [`ResMLP`](cvm/models/resmlp.py) - [ResMLP: Feedforward networks for image classification with data-efficient training](https://arxiv.org/abs/2105.03404), 2021 |
65 | 65 | - [ ] `gMLP` - [Pay Attention to MLPs](https://arxiv.org/abs/2105.08050), 2021
|
66 | 66 |
|
67 | 67 | ### Self-supervised
|
|
79 | 79 |
|
80 | 80 | ## Semantic Segmentation
|
81 | 81 |
|
82 |
| -- [x] `FCN` - [Fully Convolutional Networks for Semantic Segmentation](https://arxiv.org/abs/1411.4038), CVPR, 2014 |
83 |
| -- [x] `UNet` - [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597), MICCAI, 2015 |
| 82 | +- [x] [`FCN`](cvm/models/seg/fcn.py) - [Fully Convolutional Networks for Semantic Segmentation](https://arxiv.org/abs/1411.4038), CVPR, 2014 |
| 83 | +- [x] [`UNet`](cvm/models/seg/unet.py) - [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597), MICCAI, 2015 |
84 | 84 | - [ ] `PSPNet` - [Pyramid Scene Parsing Network](https://arxiv.org/abs/1612.01105), CVPR, 2016
|
85 |
| -- [x] `DeepLabv3` - [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/pdf/1706.05587.pdf), 2017 |
86 |
| -- [x] `DeepLabv3+` - [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/pdf/1802.02611.pdf), CVPR, 2018 |
| 85 | +- [x] [`DeepLabv3`](cvm/models/seg/deeplabv3.py) - [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/pdf/1706.05587.pdf), 2017 |
| 86 | +- [x] [`DeepLabv3+`](cvm/models/seg/deeplabv3_plus.py) - [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/pdf/1802.02611.pdf), CVPR, 2018 |
87 | 87 | - [ ] `Mask R-CNN` - [Mask R-CNN](https://arxiv.org/abs/1703.06870), 2017
|
88 | 88 |
|
89 | 89 | ## Generative Models
|
90 | 90 |
|
91 | 91 | ### GANs
|
92 | 92 |
|
93 | 93 | - [x] `GAN` - [Generative Adversarial Networks](https://arxiv.org/abs/1406.2661), 2014
|
94 |
| -- [x] `DCGAN` - [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434), ICLR, 2016 |
| 94 | +- [x] [`DCGAN`](cvm/models/gan/dcgan.py) - [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434), ICLR, 2016 |
95 | 95 | - [ ] `WGAN` - [Wasserstein GAN](https://arxiv.org/abs/1701.07875), 2017
|
96 | 96 |
|
97 | 97 | ### VAEs
|
98 | 98 |
|
99 |
| -- [x] `VAE` - [Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114), 2013 |
| 99 | +- [x] [`VAE`](cvm/models/vae/vae.py) - [Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114), 2013 |
100 | 100 | - [ ] `β-VAE` - [beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework](https://openreview.net/forum?id=Sy2fzU9gl), ICLR, 2017
|
101 | 101 |
|
102 | 102 |
|
|
108 | 108 |
|
109 | 109 | ## Adversarial Attacks
|
110 | 110 |
|
111 |
| - - [x] `FGSM` - [Explaining and Harnessing Adversarial Examples](https://arxiv.org/abs/1412.6572), ICLR, 2014 |
112 |
| - - [x] `PGD` - [Towards Deep Learning Models Resistant to Adversarial Attacks](https://arxiv.org/abs/1706.06083), ICLR, 2017 |
| 111 | + - [x] [`FGSM`](cvm/attacks/fgsm.py) - [Explaining and Harnessing Adversarial Examples](https://arxiv.org/abs/1412.6572), ICLR, 2014 |
| 112 | + - [x] [`PGD`](cvm/attacks/pgd.py) - [Towards Deep Learning Models Resistant to Adversarial Attacks](https://arxiv.org/abs/1706.06083), ICLR, 2017 |
0 commit comments