-
Notifications
You must be signed in to change notification settings - Fork 11
/
predictive_analysis.py
62 lines (54 loc) · 1.84 KB
/
predictive_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import pandas as pd
import numpy as np
from Fourier.Fourier import fourierExtrapolation
import pylab as pl
print('\n***********************************\n')
print('Predictive Analysis: Standard Linear Regression\n')
def LR():
os.chdir('LinearRegression')
exec(open("LR.py").read())
LR()
print('\n***********************************\n')
print('Predictive Analysis: Fourier Extrapolation\n')
def Fourier():
os.chdir('../Fourier')
exec(open("Fourier.py").read())
Fourier()
print('\n***********************************\n')
print('Predictive Analysis: Wavelet Extrapolation\n')
def Wavelet():
os.chdir('../Wavelet')
exec(open("Wavelet.py").read())
Wavelet()
print('\n***********************************\n')
# print('Predictive Analysis: Chaotic System\n')
# def Chaotic():
# os.chdir('../Chaotic')
# exec(open("Chaotic.py").read())
# Chaotic()
# print('\n***********************************\n')
print('Predictive Analysis: Neural Network - Linear Regression\n')
def NeuralNetLR():
os.chdir('../NeuralNetRegression')
exec(open("LR.py").read())
NeuralNetLR()
print('\n***********************************\n')
# print('Predictive Analysis: Neural Network - Fourier based\n')
# def DeeperNN():
# os.chdir('../DeeperNN/Fourier')
# exec(open("NN.py").read())
# DeeperNN()
# print('\n***********************************\n')
# print('Predictive Analysis: Neural Network - Wavelet based\n')
# def DeeperNN():
# os.chdir('../DeeperNN/Wavelet')
# exec(open("NN.py").read())
# DeeperNN()
# print('\n***********************************\n')
# print('Predictive Analysis: Neural Network - FitzHugh–Nagumo based\n')
# def DeeperNN():
# os.chdir('../DeeperNN/Fitz-Nag')
# exec(open("NN.py").read())
# DeeperNN()
# print('\n***********************************\n')