-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
310 lines (261 loc) · 13.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import argparse
import os
import math
import sys
import pickle
import time
import numpy as np
import shutil
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from model import *
from torch.autograd import Variable
from torch import nn
import torch
import torch.utils
import torch.utils.data
from helpers import *
import visdom
Tensor = torch.DoubleTensor
torch.set_default_tensor_type('torch.DoubleTensor')
def printlog(line):
print(line)
with open(save_path+'log.txt', 'a') as file:
file.write(line+'\n')
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--trial', type=int, required=True)
parser.add_argument('--model', type=str, required=True, help='NAOMI, SingleRes')
parser.add_argument('--task', type=str, required=True, help='basketball, billiard')
parser.add_argument('--y_dim', type=int, required=True)
parser.add_argument('--rnn_dim', type=int, required=True)
parser.add_argument('--dec1_dim', type=int, required=True)
parser.add_argument('--dec2_dim', type=int, required=True)
parser.add_argument('--dec4_dim', type=int, required=True)
parser.add_argument('--dec8_dim', type=int, required=True)
parser.add_argument('--dec16_dim', type=int, required=True)
parser.add_argument('--n_layers', type=int, required=False, default=2)
parser.add_argument('--seed', type=int, required=False, default=123)
parser.add_argument('--clip', type=int, required=True, help='gradient clipping')
parser.add_argument('--pre_start_lr', type=float, required=True, help='pretrain starting learning rate')
parser.add_argument('--batch_size', type=int, required=False, default=64)
parser.add_argument('--save_every', type=int, required=False, default=50, help='periodically save model')
parser.add_argument('--pretrain', type=int, required=False, default=50, help='num epochs to use supervised learning to pretrain')
parser.add_argument('--highest', type=int, required=False, default=1, help='highest resolution in terms of step size in NAOMI')
parser.add_argument('--cuda', action='store_true', default=True, help='use GPU')
parser.add_argument('--discrim_rnn_dim', type=int, required=True)
parser.add_argument('--discrim_layers', type=int, required=True, default=2)
parser.add_argument('--policy_learning_rate', type=float, default=1e-6, help='policy network learning rate for GAN training')
parser.add_argument('--discrim_learning_rate', type=float, default=1e-3, help='discriminator learning rate for GAN training')
parser.add_argument('--max_iter_num', type=int, default=60000, help='maximal number of main iterations (default: 60000)')
parser.add_argument('--log_interval', type=int, default=1, help='interval between training status logs (default: 1)')
parser.add_argument('--draw_interval', type=int, default=200, help='interval between drawing and more detailed information (default: 50)')
parser.add_argument('--pretrain_disc_iter', type=int, default=2000, help="pretrain discriminator iteration (default: 2000)")
parser.add_argument('--save_model_interval', type=int, default=50, help="interval between saving model (default: 50)")
args = parser.parse_args()
if not torch.cuda.is_available():
args.cuda = False
# model parameters
params = {
'task' : args.task,
'batch' : args.batch_size,
'y_dim' : args.y_dim,
'rnn_dim' : args.rnn_dim,
'dec1_dim' : args.dec1_dim,
'dec2_dim' : args.dec2_dim,
'dec4_dim' : args.dec4_dim,
'dec8_dim' : args.dec8_dim,
'dec16_dim' : args.dec16_dim,
'n_layers' : args.n_layers,
'discrim_rnn_dim' : args.discrim_rnn_dim,
'discrim_num_layers' : args.discrim_layers,
'cuda' : args.cuda,
'highest' : args.highest,
}
# hyperparameters
pretrain_epochs = args.pretrain
clip = args.clip
start_lr = args.pre_start_lr
batch_size = args.batch_size
save_every = args.save_every
# manual seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if use_gpu:
torch.cuda.manual_seed_all(args.seed)
# build model
policy_net = eval(args.model)(params)
discrim_net = Discriminator(params).double()
if args.cuda:
policy_net, discrim_net = policy_net.cuda(), discrim_net.cuda()
params['total_params'] = num_trainable_params(policy_net)
print(params)
# create save path and saving parameters
save_path = 'saved/' + args.model + '_' + args.task + '_%03d/' % args.trial
if not os.path.exists(save_path):
os.makedirs(save_path)
os.makedirs(save_path+'model/')
# Data
if args.task == 'basketball':
test_data = torch.Tensor(pickle.load(open('data/basketball_eval.p', 'rb'))).transpose(0, 1)[:, :-1, :]
train_data = torch.Tensor(pickle.load(open('data/basketball_train.p', 'rb'))).transpose(0, 1)[:, :-1, :]
elif args.task == 'billiard':
test_data = torch.Tensor(pickle.load(open('data/billiard_eval.p', 'rb'), encoding='latin1'))[:, :, :]
train_data = torch.Tensor(pickle.load(open('data/billiard_train.p', 'rb'), encoding='latin1'))[:, :, :]
else:
print('no such task')
exit()
print(test_data.shape, train_data.shape)
# figures and statistics
if os.path.exists('imgs'):
shutil.rmtree('imgs')
if not os.path.exists('imgs'):
os.makedirs('imgs')
vis = visdom.Visdom(env = args.model + args.task + str(args.trial))
win_pre_policy = None
win_pre_path_length = None
win_pre_out_of_bound = None
win_pre_step_change = None
############################################################################
################## START SUPERVISED PRETRAIN ##################
############################################################################
# pretrain
best_test_loss = 0
lr = start_lr
teacher_forcing = True
for e in range(pretrain_epochs):
epoch = e+1
print("Epoch: {}".format(epoch))
# draw and stats
_, _, _, _, _, _, mod_stats, exp_stats = \
collect_samples_interpolate(policy_net, test_data, use_gpu, e, args.task, name='pretrain_inter', draw=True, stats=True)
update = 'append' if epoch > 1 else None
win_pre_path_length = vis.line(X = np.array([epoch]), \
Y = np.column_stack((np.array([exp_stats['ave_length']]), np.array([mod_stats['ave_length']]))), \
win = win_pre_path_length, update = update, opts=dict(legend=['expert', 'model'], title="average path length"))
win_pre_out_of_bound = vis.line(X = np.array([epoch]), \
Y = np.column_stack((np.array([exp_stats['ave_out_of_bound']]), np.array([mod_stats['ave_out_of_bound']]))), \
win = win_pre_out_of_bound, update = update, opts=dict(legend=['expert', 'model'], title="average out of bound rate"))
win_pre_step_change = vis.line(X = np.array([epoch]), \
Y = np.column_stack((np.array([exp_stats['ave_change_step_size']]), np.array([mod_stats['ave_change_step_size']]))), \
win = win_pre_step_change, update = update, opts=dict(legend=['expert', 'model'], title="average step size change"))
# control learning rate
if epoch == pretrain_epochs // 2:
lr = lr / 10
print(lr)
if args.task == 'billiard' and epoch == pretrain_epochs * 2 // 3:
teacher_forcing = False
# train
optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, policy_net.parameters()),
lr=lr)
start_time = time.time()
train_loss = run_epoch(True, policy_net, train_data, clip, optimizer, teacher_forcing=teacher_forcing)
printlog('Train:\t' + str(train_loss))
test_loss = run_epoch(False, policy_net, test_data, clip, optimizer, teacher_forcing=teacher_forcing)
printlog('Test:\t' + str(test_loss))
epoch_time = time.time() - start_time
printlog('Time:\t {:.3f}'.format(epoch_time))
total_test_loss = test_loss
update = 'append' if epoch > 1 else None
win_pre_policy = vis.line(X = np.array([epoch]), Y = np.column_stack((np.array([test_loss]), np.array([train_loss]))), \
win = win_pre_policy, update = update, opts=dict(legend=['out-of-sample loss', 'in-sample loss'], \
title="pretrain policy training curve"))
# best model on test set
if best_test_loss == 0 or total_test_loss < best_test_loss:
best_test_loss = total_test_loss
filename = save_path+'model/policy_step'+str(args.highest)+'_state_dict_best_pretrain.pth'
torch.save(policy_net.state_dict(), filename)
printlog('Best model at epoch '+str(epoch))
# periodically save model
if epoch % save_every == 0:
filename = save_path+'model/policy_step'+str(args.highest)+'_state_dict_'+str(epoch)+'.pth'
torch.save(policy_net.state_dict(), filename)
printlog('Saved model')
printlog('End of Pretrain, Best Test Loss: {:.4f}'.format(best_test_loss))
# billiard does not need adversarial training
if args.task == 'billiard':
exit()
############################################################################
################## START ADVERSARIAL TRAINING ##################
############################################################################
# load the best pretrained policy
policy_state_dict = torch.load(save_path+'model/policy_step'+str(args.highest)+'_state_dict_best_pretrain.pth')
#policy_state_dict = torch.load(save_path+'model/policy_step'+str(args.highest)+'_training.pth')
policy_net.load_state_dict(policy_state_dict)
# optimizer
optimizer_policy = torch.optim.Adam(
filter(lambda p: p.requires_grad, policy_net.parameters()),
lr=args.policy_learning_rate)
optimizer_discrim = torch.optim.Adam(discrim_net.parameters(), lr=args.discrim_learning_rate)
discrim_criterion = nn.BCELoss()
if use_gpu:
discrim_criterion = discrim_criterion.cuda()
# stats
exp_p = []
win_exp_p = None
mod_p = []
win_mod_p = None
win_path_length = None
win_out_of_bound = None
win_step_change = None
# Pretrain Discriminator
for i in range(args.pretrain_disc_iter):
exp_states, exp_actions, exp_seq, model_states_var, model_actions_var, model_seq, mod_stats, exp_stats = \
collect_samples_interpolate(policy_net, train_data, use_gpu, i, args.task, name="pretraining", draw=False, stats=False)
model_states = model_states_var.data
model_actions = model_actions_var.data
pre_mod_p, pre_exp_p = update_discrim(discrim_net, optimizer_discrim, discrim_criterion, exp_states, \
exp_actions, model_states, model_actions, i, dis_times=3.0, use_gpu=use_gpu, train=True)
print(i, 'exp: ', pre_exp_p, 'mod: ', pre_mod_p)
if pre_mod_p < 0.3:
break
# Save pretrained model
if args.pretrain_disc_iter > 250:
torch.save(policy_net.state_dict(), save_path+'model/policy_step'+str(args.highest)+'_pretrained.pth')
torch.save(discrim_net.state_dict(), save_path+'model/discrim_step'+str(args.highest)+'_pretrained.pth')
# GAN training
for i_iter in range(args.max_iter_num):
ts0 = time.time()
print("Collecting Data")
exp_states, exp_actions, exp_seq, model_states_var, model_actions_var, model_seq, mod_stats, exp_stats = \
collect_samples_interpolate(policy_net, train_data, use_gpu, i_iter, args.task, draw=False, stats=False)
model_states = model_states_var.data
model_actions = model_actions_var.data
# draw and stats
if i_iter % args.draw_interval == 0:
_, _, _, _, _, _, mod_stats, exp_stats = \
collect_samples_interpolate(policy_net, test_data, use_gpu, i_iter, args.task, draw=True, stats=True)
# print(mod_stats)
update = 'append' if i_iter > 0 else None
win_path_length = vis.line(X = np.array([i_iter // args.draw_interval]), \
Y = np.column_stack((np.array([exp_stats['ave_length']]), np.array([mod_stats['ave_length']]))), \
win = win_path_length, update = update, opts=dict(legend=['expert', 'model'], title="average path length"))
win_out_of_bound = vis.line(X = np.array([i_iter // args.draw_interval]), \
Y = np.column_stack((np.array([exp_stats['ave_out_of_bound']]), np.array([mod_stats['ave_out_of_bound']]))), \
win = win_out_of_bound, update = update, opts=dict(legend=['expert', 'model'], title="average out of bound rate"))
win_step_change = vis.line(X = np.array([i_iter // args.draw_interval]), \
Y = np.column_stack((np.array([exp_stats['ave_change_step_size']]), np.array([mod_stats['ave_change_step_size']]))), \
win = win_step_change, update = update, opts=dict(legend=['expert', 'model'], title="average step size change"))
ts1 = time.time()
t0 = time.time()
# update discriminator
mod_p_epoch, exp_p_epoch = update_discrim(discrim_net, optimizer_discrim, discrim_criterion, exp_states, exp_actions, \
model_states, model_actions, i_iter, dis_times=3.0, use_gpu=use_gpu, train=True)
exp_p.append(exp_p_epoch)
mod_p.append(mod_p_epoch)
# update policy network
if i_iter > 3 and mod_p[-1] < 0.8:
update_policy(policy_net, optimizer_policy, discrim_net, discrim_criterion, model_states_var, model_actions_var, i_iter, use_gpu)
t1 = time.time()
if i_iter % args.log_interval == 0:
print('{}\tT_sample {:.4f}\tT_update {:.4f}\texp_p {:.3f}\tmod_p {:.3f}'.format(
i_iter, ts1-ts0, t1-t0, exp_p[-1], mod_p[-1]))
update = 'append'
if win_exp_p is None:
update = None
win_exp_p = vis.line(X = np.array([i_iter]), \
Y = np.column_stack((np.array([exp_p[-1]]), np.array([mod_p[-1]]))), \
win = win_exp_p, update = update, \
opts=dict(legend=['expert_prob', 'model_prob'], title="training curve probs"))
if args.save_model_interval > 0 and (i_iter) % args.save_model_interval == 0:
torch.save(policy_net.state_dict(), save_path+'model/policy_step'+str(args.highest)+'_training.pth')
torch.save(discrim_net.state_dict(), save_path+'model/discrim_step'+str(args.highest)+'_training.pth')