forked from google/lyra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlyra_gan_model.cc
67 lines (58 loc) · 2.12 KB
/
lyra_gan_model.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
* Copyright 2022 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lyra_gan_model.h"
#include <algorithm>
#include <cstdint>
#include <memory>
#include <optional>
#include <type_traits>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/types/span.h"
#include "dsp_utils.h"
#include "glog/logging.h" // IWYU pragma: keep
#include "tflite_model_wrapper.h"
namespace chromemedia {
namespace codec {
std::unique_ptr<LyraGanModel> LyraGanModel::Create(
const ghc::filesystem::path& model_path, int num_features) {
auto model =
TfLiteModelWrapper::Create(model_path / "lyragan.tflite",
/*use_xnn=*/true, /*int8_quantized=*/true);
if (model == nullptr) {
LOG(ERROR) << "Unable to create LyraGAN TFLite model wrapper.";
return nullptr;
}
return absl::WrapUnique(new LyraGanModel(std::move(model), num_features));
}
LyraGanModel::LyraGanModel(std::unique_ptr<TfLiteModelWrapper> model,
int num_features)
: GenerativeModel(model->get_output_tensor<float>(0).size(), num_features),
model_(std::move(model)) {}
bool LyraGanModel::RunConditioning(const std::vector<float>& features) {
absl::Span<float> input = model_->get_input_tensor<float>(0);
std::copy(features.begin(), features.end(), input.begin());
model_->Invoke();
return true;
}
std::optional<std::vector<int16_t>> LyraGanModel::RunModel(int num_samples) {
return UnitToInt16(absl::MakeConstSpan(
&model_->get_output_tensor<float>(0).at(next_sample_in_hop()),
num_samples));
}
} // namespace codec
} // namespace chromemedia