-
Notifications
You must be signed in to change notification settings - Fork 2
/
test.py
77 lines (62 loc) · 2.38 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
from collections import OrderedDict
from torch.autograd import Variable
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
from util import html
import torch
'''
python test.py --no_flip --no_instance --resize_or_crop scale_width
'''
opt = TestOptions().parse(save=False)
opt.nThreads = 0 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# test
if not opt.engine and not opt.onnx:
model = create_model(opt)
if opt.data_type == 16:
model.half()
elif opt.data_type == 8:
model.type(torch.uint8)
if opt.verbose:
print(model)
else:
from run_engine import run_trt_engine, run_onnx
import time
begin = time.time()
for i, data in enumerate(dataset):
# if i >= opt.how_many:
# break
# if opt.data_type == 16:
# data['label'] = data['label'].half()
# data['inst'] = data['inst'].half()
# elif opt.data_type == 8:
# data['label'] = data['label'].uint8()
# data['inst'] = data['inst'].uint8()
# if opt.export_onnx:
# print ("Exporting to ONNX: ", opt.export_onnx)
# assert opt.export_onnx.endswith("onnx"), "Export model file should end with .onnx"
# torch.onnx.export(model, [data['label'], data['inst']],
# opt.export_onnx, verbose=True)
# exit(0)
minibatch = 1
generated = model.inference(data['label'], image= None, label_parsing=data['label_parsing'])
visuals = OrderedDict([
# ('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
('', util.tensor2im(generated.data[0]))])
img_path = data['path']
print('process image... %s' % img_path)
visualizer.save_images(webpage, visuals, img_path)
print('平均时间:',(time.time()-begin)/i)
webpage.save()