-
Notifications
You must be signed in to change notification settings - Fork 1
/
lf_approx.py
158 lines (123 loc) · 5.17 KB
/
lf_approx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from collections import defaultdict
from common import load, epsilon_greedy_policy
from linear_function import LinearFunction
import numpy as np
from state import State
from env import step
from progressbar import ProgressBar
import matplotlib
import pylab as plt
matplotlib.use('Agg')
from datetime import datetime
HIT, STICK = 1, 0
def calculate_mse(action_value_function):
mc_action_value_function = load('mc_result.dat')
linear_function = LinearFunction()
mse, count = 0, 0
for dealer in range(1, 11):
for player in range(1, 22):
for action in range(0, 2):
state = State(dealer=dealer, player=player)
linear_function.update(state)
features = linear_function.get_features()
mc_reward = mc_action_value_function[(dealer, player, action)]
reward = action_value_function[(tuple(features), action)]
mse += (reward - mc_reward) ** 2
count += 1
mse /= count
return mse
def update_action_value_function(action_value_function, (features, action), params):
features = np.array(features)
new_value = features.dot(params)
action_value_function[(tuple(features), action)] = new_value
def sarsa(lambd):
n_episodes = 1000
epi_batch = 100
episodes = xrange(n_episodes)
action_value_function = defaultdict(float)
linear_function = LinearFunction()
params_hit = np.array([0 for i in range(18)])
params_stick = np.array([0 for i in range(18)])
n_zero = 10
epsilon = 0.05
alpha = 0.01
if lambd == 0.0 or lambd == 1.0:
mses = []
for episode in episodes:
if episode%epi_batch == 0:
if lambd == 0.0 or lambd == 1.0:
mses.append(calculate_mse(action_value_function))
# initialize state, action, epsilon, and eligibility-trace
state = State()
linear_function.update(state)
current_feats = linear_function.get_features()
action = epsilon_greedy_policy(action_value_function, state, epsilon, current_feats)
eligibility_hit = np.array([0 for i in range(18)])
eligibility_stick = np.array([0 for i in range(18)])
while not state.terminal:
np_feats = np.array(current_feats)
if action is HIT:
eligibility_hit = np.add(eligibility_hit, np_feats)
else:
eligibility_stick = np.add(eligibility_stick, np_feats)
reward = step(state, action)
linear_function.update(state)
new_features = linear_function.get_features()
# update delta
delta_hit = reward - np.array(tuple(new_features)).dot(params_hit)
delta_stick = reward - np.array(tuple(new_features)).dot(params_stick)
# update Action Value Function
if action == HIT:
update_action_value_function(action_value_function, (new_features, action), params_hit)
else:
update_action_value_function(action_value_function, (new_features, action), params_stick)
# update delta, parameters, and eligibility-trace
if action == HIT:
delta_hit += action_value_function[(tuple(new_features), HIT)]
else:
delta_stick += action_value_function[(tuple(new_features), STICK)]
params_hit = np.add(params_hit, alpha * delta_hit * eligibility_hit)
params_stick = np.add(params_stick, alpha * delta_stick * eligibility_stick)
eligibility_hit = eligibility_hit * lambd
eligibility_stick = eligibility_stick * lambd
# decide an action
action = epsilon_greedy_policy(action_value_function, state, epsilon, new_features)
# update state and action
current_features = new_features
if lambd == 0.0 or lambd == 1.0:
mses.append(calculate_mse(action_value_function))
# plot mses curve
if lambd == 0.0 or lambd == 1.0:
print "Plotting learning curve for $\lambda$=",lambd
x = range(0, n_episodes + 1, epi_batch)
fig = plt.figure()
plt.title('Learning curve of MSE against Episodes @ $\lambda$ = ' + str(lambd))
plt.xlabel("episode number")
plt.xlim([0, n_episodes])
plt.xticks(range(0, n_episodes + 1, epi_batch))
plt.ylabel("Mean-Squared Error (MSE)")
plt.plot(x, mses)
fname = "lapprox_mse_lambda%f_%s.png" % (lambd, str(datetime.now()))
plt.savefig(fname)
# plt.show()
mse = calculate_mse(action_value_function)
return mse
if __name__ == '__main__':
mses = [0 for i in range(11)]
pbar = ProgressBar(maxval=len(mses)).start()
for i in range(11):
mses[i] = sarsa(lambd=float(i) / 10)
pbar.update(i)
pbar.finish()
# plot the mse against lambda
x = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
fig = plt.figure()
plt.title('Mean-Squared Error against $\lambda$')
plt.xlabel("$\lambda$")
plt.xlim([0., 1.])
plt.xticks(x)
plt.ylabel("Mean-Squared Error")
plt.plot(x, mses)
fname = "lapprox_mse_vs_lamnda_" + str(datetime.now())+".png"
plt.savefig(fname)
# plt.show()