Software Defined Network Situational Awareness
Poseidon began as a joint effort between two of the IQT Labs: Cyber Reboot and Lab41. The project's goal is to explore approaches to better identify what nodes are on a given (computer) network and understand what they are doing. The project utilizes Software Defined Networking and machine learning to automatically capture network traffic, extract relevant features from that traffic, perform classifications through trained models, convey results, and provide mechanisms to take further action. While the project works best leveraging modern SDNs, parts of it can still be used with little more than packet capture (pcap) files.
- Background
- Prerequisites
- Installing or updating Poseidon
- SDN Controller Configuration
- Usage
- Troubleshooting
- Network Data Logging
- Related Components
- Additional Info
The Poseidon project originally began as an experiment to test the merits of leveraging SDN and machine learning techniques to detect abnormal network behavior. (Please read our blogs posts linked below for several years of background) While that long-term goal remains, the unfortunate reality is that the state of rich, labelled, public, and MODERN network data sets for ML training is pretty poor. Our lab is working on improving the availability of network training sets, but in the near term the project remains focused on 1) improving the accuracy of identifying what a node IS (based on captured IP header data) and 2) developing Poseidon into a "harness" of sorts to house machine learning techniques for additional use cases. (Read: Not just ours!)
- Docker - Poseidon and related components run on top of Docker, so understanding the fundamentals will be useful for troubleshooting as well. Note: installing via Snap is currently unsupported. A Good Ubuntu Docker Quick-Start
- Compose - Poseidon is orchestrated with docker-compose. You will need a version that supports compose file format version 3 and health check conditions (minimum 1.29.2).
- Curl - command-line for transferring data with URLs.
- git - distributed version control system.
- jq - command-line JSON processor.
- An SDN Controller - specifically Faucet
- ~10GB of free disk space
Note: Installation on
OS X
is possible but not supported.
To simplify using commands with Docker, we recommend allowing the user that will be executing Poseidon commands be part of the docker
group so they can execute Docker commands without sudo
. Typically, this can be done with:
sudo usermod -aG docker $USER
Followed by closing the existing shell and starting a new one.
NOTE: If you have previously installed Poseidon from a .deb package, please remove it first. Installation from .deb is no longer supported.
Install the poseidon script which we will use to install and manage Poseidon.
curl -L https://raw.githubusercontent.com/IQTLabs/poseidon/main/bin/poseidon -o /usr/local/bin/poseidon
chmod +x /usr/local/bin/poseidon
Poseidon uses a faucetconfrpc server, to maintain Faucet configuration. Poseidon starts its own server for you by default, and also by default Poseidon and Faucet have to be on the same machine. To run Faucet on a separate machine, you will need to start faucetconfrpc on that other machine, and update faucetconfrpc_address
to point to where the faucetconfrpc is running. You may also need to update faucetconfrpc_client
, if you are not using the provided automatically generated keys.
If you have Faucet running already, make sure Faucet is started with the following environment variables, which allow Poseidon to change its config, and receive Faucet events:
export FAUCET_EVENT_SOCK=1
export FAUCET_CONFIG_STAT_RELOAD=1
Faucet is now configured and ready for use with Poseidon.
Faucet supports stacking (distributed switching - multiple switches acting together as one). Poseidon also supports this - Poseidon's mirroring interface should be connected to a port on the root switch. You will need to allocate a port on each non-root switch also, and install a loopback plug (either Ethernet or fiber) in that port. Poseidon will detect stacking and take care of the rest of the details (using Faucet's tunneling feature to move mirror packets from the non-root switches to the root switch's mirror port). The only Poseidon config required is to add the dedicated port on each switch to the controller_mirror_port
dictionary.
You will need to create a directory and config file on the server where Poseidon will run.
sudo mkdir /opt/poseidon
sudo cp config/poseidon.config /opt/poseidon
Now, edit this file. You will need to set at minimum:
- controller_type, as appropriate to the controller you are running (see above).
- collector_nic: must be set to the interface name on the server, that is connected to the switch mirror port.
- controller_mirror_ports: must be set to the interface on the switch that will be used as the mirror port.
Optionally, you may also set controller_proxy_mirror_ports (for switches that don't have their own mirror ports, and can be mirrored with another switch).
From v0.10.0, you can update an existing Poseidon installation with poseidon -u
(your configuration will be preserved). Updating from previous versions is not supported - please remove and reinstall as above. You can also give poseidon -u
a specific git hash if you want to update to an unreleased version.
After installation you'll have a new command poseidon
available for looking at the configuration, logs, and shell, as well as stopping and starting the service.
$ poseidon help
Poseidon, an application that leverages software defined networks (SDN) to acquire and then feed network traffic to a number of machine learning techniques. For more info visit: https://github.com/IQTLabs/poseidon
Usage: poseidon [option]
Options:
-a, api get url to the Poseidon API
-c, config display current configuration info
-d, delete delete Poseidon installation (uses sudo)
-e, shell enter into the Poseidon shell, requires Poseidon to already be running
-h, help print this help
-i, install install Poseidon repo (uses sudo)
-l, logs display the information logs about what Poseidon is doing
-r, restart restart the Poseidon service (uses sudo)
-s, start start the Poseidon service (uses sudo)
-S, stop stop the Poseidon service (uses sudo)
-u, update update Poseidon repo, optionally supply a version (uses sudo)
-V, version get the version installed
Step 0:
Optionally specify a prefix location to install Poseidon by setting an environment variable, if it is unset, it will default to /opt
and Poseidon. (If using Faucet, it will also override /etc
locations to this prefix.)
export POSEIDON_PREFIX=/tmp
Step 1:
poseidon install
Step 2:
Configure Poseidon for your preferred settings. Open /opt/poseidon/poseidon.config
(add the Poseidon prefix if you specified one).
For using Faucet, make sure to minimally change the controller_mirror_ports
to match the switch name and port number of your mirror port. You will also need to update the collector_nic
in the poseidon
section to match the interface name of the NIC your mirror port is connected to.
Step 3:
If you don't have Faucet already and/or you want to Poseidon to spin up Faucet for you as well, simply run the following command and you will be done:
poseidon start
Step 4:
If you are using your own installation of Faucet, you will need to enable communication between Poseidon and Faucet. Poseidon needs to change Faucet's configuration, and Faucet needs to send events to Poseidon. This configuration needs to be set with environment variables (see https://docs.faucet.nz/). For example, if running Faucet with Docker, you will need the following environment configuration in the faucet
service in your docker-compose file:
environment:
FAUCET_CONFIG: '/etc/faucet/faucet.yaml'
FAUCET_EVENT_SOCK: '/var/run/faucet/faucet.sock'
FAUCET_CONFIG_STAT_RELOAD: '1'
If Faucet and Poseidon are running on the same machine, you can start Poseidon and you will be done:
poseidon start --standalone
Step 5:
If you are running Faucet and Poseidon on different machines, configuration is more complex (work to make this easier is ongoing): execute Step 4 first. Then you will need to run event-adapter-rabbitmq
and faucetconfrpc
services on the Faucet host, and change Poseidon's configuration to match.
First start all services from helpers/faucet/docker-compose.yaml
on the Faucet host, using a Docker network that has network connectivity with your Poseidon host. Set FA_RABBIT_HOST
to be the address of your Poseidon host. faucet_certstrap
will generate keys in /opt/faucetconfrpc
which will need to be copied to your Poseidon host. Then modify faucetconfrpc_address
in /opt/poseidon/config/poseidon.config
to point to your Faucet host.
You can now start Poseidon:
poseidon start --standalone
Poseidon by its nature depends on other systems. The following are some common issues and troubleshooting steps.
The most common cause of this problem, with the FAUCET controller, is RabbitMQ connectivity.
- Check that the RabbitMQ event adapter (faucet/event-adapter-rabbitmq) is running and not restarting.
# docker ps|grep faucet/event-adapter-rabbitmq
4a7509829be0 faucet/event-adapter-rabbitmq "/usr/local/bin/entr…" 3 days ago Up 3 days
- Check that FAUCET.Event messages are being received by Poseidon.
This command reports the time that the most recent FAUCET.Event message was received by Poseidon.
If run repeatedly over a couple of minutes this timestamp should increase.
docker exec -it poseidon_poseidon_1 /bin/sh
/poseidon # wget -q -O- localhost:9304|grep -E ^poseidon_last_rabbitmq_routing_key_time.+FAUCET.Event
poseidon_last_rabbitmq_routing_key_time{routing_key="FAUCET.Event"} 1.5739482267393966e+09
/poseidon # wget -q -O- localhost:9304|grep -E ^poseidon_last_rabbitmq_routing_key_time.+FAUCET.Event
poseidon_last_rabbitmq_routing_key_time{routing_key="FAUCET.Event"} 1.5739487978768678e+09
/poseidon # exit
- Check that the mirror interface is up and receiving packets (should be configured in
collector_nic
. The interface must be up before Posiedon starts.
# ifconfig enx0023559c2781
enx0023559c2781: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet6 fe80::223:55ff:fe9c:2781 prefixlen 64 scopeid 0x20<link>
ether 00:23:55:9c:27:81 txqueuelen 1000 (Ethernet)
RX packets 82979981 bytes 77510139268 (77.5 GB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 202 bytes 15932 (15.9 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
- Check that there is disk space available and pcaps are being accumulated in /opt/poseidon_files (add
POSEIDON_PREFIX
in front if it was used.)
# find /opt/poseidon_files -type f -name \*pcap |head -5
/opt/poseidon_files/trace_d3f3217106acd75fe7b5c7069a84a227c9e48377_2019-11-15_03_10_41.pcap
/opt/poseidon_files/tcprewrite-dot1q-2019-11-15-06_26_48.529473-UTC/pcap-node-splitter-2019-11-15-06_26_50.192570-UTC/clients/trace_0a6ce9490c193b65c3cad51fffbadeaed4ed5fdd_2019-11-15_06_11_24-client-ip-216-58-196-147-192-168-254-254-216-58-196-147-vssmonitoring-frame-eth-ip-icmp.pcap
/opt/poseidon_files/tcprewrite-dot1q-2019-11-15-06_26_48.529473-UTC/pcap-node-splitter-2019-11-15-06_26_50.192570-UTC/clients/trace_0a6ce9490c193b65c3cad51fffbadeaed4ed5fdd_2019-11-15_06_11_24-miscellaneous-192-168-254-1-192-168-254-254-vssmonitoring-frame-eth-arp.pcap
/opt/poseidon_files/tcprewrite-dot1q-2019-11-15-06_26_48.529473-UTC/pcap-node-splitter-2019-11-15-06_26_50.192570-UTC/clients/trace_0a6ce9490c193b65c3cad51fffbadeaed4ed5fdd_2019-11-15_06_11_24-client-ip-192-168-254-254-192-168-254-254-74-125-200-189-udp-frame-eth-ip-wsshort-port-443.pcap
/opt/poseidon_files/tcprewrite-dot1q-2019-11-15-06_26_48.529473-UTC/pcap-node-splitter-2019-11-15-06_26_50.192570-UTC/servers/trace_0a6ce9490c193b65c3cad51fffbadeaed4ed5fdd_2019-11-15_06_11_24-server-ip-74-125-68-188-192-168-254-254-74-125-68-188-frame-eth-ip-tcp-port-5228.pcap
If installed as described above, poseidon's codebase will be at /opt/poseidon
. At this location, make changes, then run poseidon restart
.
Poseidon logs some data about the network it monitors. Therefore it is important to secure Poseidon's own host (aside from logging, Poseidon can of course change FAUCET's network configuration).
There are two main types of logging at the lowest level. The first is FAUCET events - FAUCET generates an event when it learns on which port a host is present on the network, and the event includes source and destination Ethernet MAC and IP addresses (if present). For example:
2019-11-21 20:18:41,909 [DEBUG] faucet - got faucet message for l2_learn: {'version': 1, 'time': 1574367516.3555572, 'dp_id': 1, 'dp_name': 'x930', 'event_id': 172760, 'L2_LEARN': {'port_no': 22, 'previous_port_no': None, 'vid': 254, 'eth_src': '0e:00:00:00:00:99', 'eth_dst': '0e:00:00:00:00:01', 'eth_type': 2048, 'l3_src_ip': '192.168.254.3', 'l3_dst_ip': '192.168.254.254'}}
The second type of logging is host based pcap captures, with most of the application (L4) payload removed. Poseidon causes the ncapture
component (https://github.com/IQTLabs/network-tools/tree/main/network_tap/ncapture) to capture traffic, which is logged in /opt/poseidon_files
. These are used in turn to learn host roles, etc.
- Authors
- Blog posts:
- How to Install Poseidon and get it working with Faucet SDN
- Running Poseidon on a 100G Netowork
- Using machine learning to classify devices on your network
- CRviz: Initial Release
- CRviz: Scalable design for network visualization
- A better way to visualize what’s on our networks?
- TCPDump, and the care and feeding of an intelligent SDN
- The Case for Detecting Lateral Movement
- Poseidon with FAUCET SDN Controller
- Building a Software-Defined Network with Raspberry Pis and a Zodiac FX switch
- Thanks to FAUCET, Poseidon Now Supports Switches Running OpenFlow 1.3
- Deep Session Learning for Cyber Security
- Introducing Vent
- SDN and the need for more (security) verbs
- See the latest changes here.
- Code of Conduct
- Want to contribute? Awesome! Issue a pull request or see more details here.
- Developer Guide
- License
- Maintainers
- Releases
- Tests
- Version
- Videos: