Skip to content

fatimesevilgen/email-spam-classifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš€ Email Spam Classification App

Streamlit
Python
License

Email Spam Classification App is a real-time email spam classification application developed with Streamlit. It employs TF–IDF vectorization for feature extraction, a Multinomial Naive Bayes classifier for prediction, and joblib for efficient model serialization and loading.

Maintain the integrity of your inbox by accurately identifying and filtering unwanted messages.

Ekran gΓΆrΓΌntΓΌsΓΌ 2025-05-19 172233

Ekran gΓΆrΓΌntΓΌsΓΌ 2025-05-19 172126


πŸ” Features

  • Instant Predictions
    TF–IDF + MultinomialNB pipeline delivers results in milliseconds.
  • Streamlit UI
    Clean, interactive front-end for one-click spam detection.
  • Modular Design
    Model and vectorizer serialized with joblib for easy updates.
  • Easy Setup
    All dependencies listed in requirements.txt:
    pip install -r requirements.txt
    
  • Open Source MIT-licensed - customize and extend as you like.

πŸ› οΈ Installation & Usage

  1. Clone The Repo

    git clone https://github.com/fatimesevilgen/email-spam-classifier.git
    cd email-spam-classifier
  2. Create and activate a virtual environment (optional but recommended)

    python -m venv venv
    # macOS/Linux
    source venv/bin/activate
    # Windows
    venv\Scripts\activate
  3. Install Dependencies

    pip install -r requirements.txt
  4. Run The App

    streamlit run app.py

πŸ“ Project Structure

email-spam-classifier/
    β”œβ”€β”€ predict.py                   # Predict method with model & vectorizer
    β”œβ”€β”€ app.py                       # Streamlit application code
    β”œβ”€β”€ spam_model.joblib            # Trained MultinomialNB model
    β”œβ”€β”€ tfidf_vectorizer.joblib      # Trained TF–IDF vectorizer
    β”œβ”€β”€ requirements.txt             # Python dependencies
    └── README.md                    # This file

🀝 Contributing

  1. Fork this repository

  2. Create a feature branch (git checkout -b feature/awesome-new)

  3. Commit your changes (git commit -m "Add awesome new feature")

  4. Push to your branch (git push origin feature/awesome-new)

  5. Open a Pull Request πŸš€

πŸ“„ License

This project is licensed under the MIT License. See the LICENSE file for details.

πŸ“¬ Contact

Questions, suggestions, or just want to say hi?

Releases

No releases published

Packages

No packages published