Spatio-temporal weather prediction model based on graph evolution
- pytorch (see https://pytorch.org/get-started/locally/ for how to install it)
- GPU
- Numpy (see http://www.numpy.org/)
-
The source dataset is in Google Drive and Baiduyun with code
ni44
. -
The source dataset and processed dataset are in Google Drive
├── Readme.md // help
├── requirements.txt //
├── GE // graph evolution
│ ├── Geo_threshold.py // the adjacency matrix generation method based on geographical threshold
│ ├── KNN.py // the adjacency matrix generation method based on k nearest-neighbor
│ ├── TIN.py // the adjacency matrix generation method based on triangulated irregular network
│ ├── parallel.py // multi-GPUs parapall control
│ ├── population.py // define about population
│ ├── utils.py // define about genetic operations
│ ├── individual.py // define about individuals
├── baseline.py // baselines based on traditional machine learning methods
├── feature_selection.py // feature selection
├── graph_evolution.py // setup of graph evolution
├── main.py
├── measure.py // evaluation standard
├── model.py // model of STDGN
├── model_fs.py // model used in feature selection
├── tester.py
└── trainer.py
- k->[6,23], β is adopted to weigh distance and altitude is 0.8 in KNN
- threshold in distance is 300km, and altitude is 1200m
- mutation 0.1
- crossing 0.8
|