@@ -140,9 +140,9 @@ def write_project_cpp(self, model):
140140 #Add input/output type
141141 elif '//hls-fpga-machine-learning insert IO' in line :
142142 newline = line
143- all_inputs = [i .cppname for i in model_inputs ]
144- all_outputs = [o .cppname for o in model_outputs ]
145- all_brams = [b .cppname for b in model_brams ]
143+ all_inputs = [i .name for i in model_inputs ]
144+ all_outputs = [o .name for o in model_outputs ]
145+ all_brams = [b .name for b in model_brams ]
146146 io_type = model .config .get_config_value ("IOType" )
147147
148148 if io_type == 'io_parallel' :
@@ -372,29 +372,29 @@ def write_test_bench(self, model):
372372 elif '//hls-fpga-machine-learning insert bram' in line :
373373 newline = line
374374 for bram in model_brams :
375- newline += '#include \" firmware/weights/{}.h\" \n ' .format (bram .cppname )
375+ newline += '#include \" firmware/weights/{}.h\" \n ' .format (bram .name )
376376 elif '//hls-fpga-machine-learning insert data' in line :
377377 newline = line
378378 offset = 0
379379 for inp in model_inputs :
380380 newline += ' ' + inp .definition_cpp () + ';\n '
381- newline += ' nnet::copy_data<float, {}, {}, {}>(in, {});\n ' .format (inp .type .name , offset , inp .size_cpp (), inp .cppname )
381+ newline += ' nnet::copy_data<float, {}, {}, {}>(in, {});\n ' .format (inp .type .name , offset , inp .size_cpp (), inp .name )
382382 offset += inp .size ()
383383 for out in model_outputs :
384384 newline += ' ' + out .definition_cpp () + ';\n '
385385 elif '//hls-fpga-machine-learning insert zero' in line :
386386 newline = line
387387 for inp in model_inputs :
388388 newline += ' ' + inp .definition_cpp () + ';\n '
389- newline += ' nnet::fill_zero<{}, {}>({});\n ' .format (inp .type .name , inp .size_cpp (), inp .cppname )
389+ newline += ' nnet::fill_zero<{}, {}>({});\n ' .format (inp .type .name , inp .size_cpp (), inp .name )
390390 for out in model_outputs :
391391 newline += ' ' + out .definition_cpp () + ';\n '
392392 elif '//hls-fpga-machine-learning insert top-level-function' in line :
393393 newline = line
394394
395- input_vars = ',' .join ([i .cppname for i in model_inputs ])
396- output_vars = ',' .join ([o .cppname for o in model_outputs ])
397- bram_vars = ',' .join ([b .cppname for b in model_brams ])
395+ input_vars = ',' .join ([i .name for i in model_inputs ])
396+ output_vars = ',' .join ([o .name for o in model_outputs ])
397+ bram_vars = ',' .join ([b .name for b in model_brams ])
398398
399399 # Concatenate the input, output, and bram variables. Filter out empty/null values
400400 all_vars = ',' .join (filter (None , [input_vars , output_vars , bram_vars ]))
@@ -412,11 +412,11 @@ def write_test_bench(self, model):
412412 elif '//hls-fpga-machine-learning insert tb-output' in line :
413413 newline = line
414414 for out in model_outputs :
415- newline += indent + 'nnet::print_result<{}, {}>({}, fout);\n ' .format (out .type .name , out .size_cpp (), out .cppname ) #TODO enable this
415+ newline += indent + 'nnet::print_result<{}, {}>({}, fout);\n ' .format (out .type .name , out .size_cpp (), out .name ) #TODO enable this
416416 elif '//hls-fpga-machine-learning insert output' in line or '//hls-fpga-machine-learning insert quantized' in line :
417417 newline = line
418418 for out in model_outputs :
419- newline += indent + 'nnet::print_result<{}, {}>({}, std::cout, true);\n ' .format (out .type .name , out .size_cpp (), out .cppname )
419+ newline += indent + 'nnet::print_result<{}, {}>({}, std::cout, true);\n ' .format (out .type .name , out .size_cpp (), out .name )
420420 else :
421421 newline = line
422422 fout .write (newline )
@@ -447,11 +447,11 @@ def write_bridge(self, model):
447447 elif '//hls-fpga-machine-learning insert bram' in line :
448448 newline = line
449449 for bram in model_brams :
450- newline += '#include \" firmware/weights/{}.h\" \n ' .format (bram .cppname )
450+ newline += '#include \" firmware/weights/{}.h\" \n ' .format (bram .name )
451451 elif '//hls-fpga-machine-learning insert header' in line :
452452 dtype = line .split ('#' , 1 )[1 ].strip ()
453- inputs_str = ', ' .join (['{type} {name}[{shape}]' .format (type = dtype , name = i .cppname , shape = i .size_cpp ()) for i in model_inputs ])
454- outputs_str = ', ' .join (['{type} {name}[{shape}]' .format (type = dtype , name = o .cppname , shape = o .size_cpp ()) for o in model_outputs ])
453+ inputs_str = ', ' .join (['{type} {name}[{shape}]' .format (type = dtype , name = i .name , shape = i .size_cpp ()) for i in model_inputs ])
454+ outputs_str = ', ' .join (['{type} {name}[{shape}]' .format (type = dtype , name = o .name , shape = o .size_cpp ()) for o in model_outputs ])
455455
456456 newline = ''
457457 newline += indent + inputs_str + ',\n '
@@ -461,17 +461,17 @@ def write_bridge(self, model):
461461 newline = ''
462462 for i in model_inputs :
463463 newline += indent + '{var};\n ' .format (var = i .definition_cpp (name_suffix = '_ap' ))
464- newline += indent + 'nnet::convert_data<{}, {}, {}>({}, {}_ap);\n ' .format (dtype , i .type .name , i .size_cpp (), i .cppname , i .cppname )
464+ newline += indent + 'nnet::convert_data<{}, {}, {}>({}, {}_ap);\n ' .format (dtype , i .type .name , i .size_cpp (), i .name , i .name )
465465 newline += '\n '
466466
467467 for o in model_outputs :
468468 newline += indent + '{var};\n ' .format (var = o .definition_cpp (name_suffix = '_ap' ))
469469
470470 newline += '\n '
471471
472- input_vars = ',' .join ([i .cppname + '_ap' for i in model_inputs ])
473- bram_vars = ',' .join ([b .cppname for b in model_brams ])
474- output_vars = ',' .join ([o .cppname + '_ap' for o in model_outputs ])
472+ input_vars = ',' .join ([i .name + '_ap' for i in model_inputs ])
473+ bram_vars = ',' .join ([b .name for b in model_brams ])
474+ output_vars = ',' .join ([o .name + '_ap' for o in model_outputs ])
475475
476476 # Concatenate the input, output, and bram variables. Filter out empty/null values
477477 all_vars = ',' .join (filter (None , [input_vars , output_vars , bram_vars ]))
@@ -482,7 +482,7 @@ def write_bridge(self, model):
482482 newline += '\n '
483483
484484 for o in model_outputs :
485- newline += indent + 'nnet::convert_data<{}, {}, {}>({}_ap, {});\n ' .format (o .type .name , dtype , o .size_cpp (), o .cppname , o .cppname )
485+ newline += indent + 'nnet::convert_data<{}, {}, {}>({}_ap, {});\n ' .format (o .type .name , dtype , o .size_cpp (), o .name , o .name )
486486 elif '//hls-fpga-machine-learning insert trace_outputs' in line :
487487 newline = ''
488488 for layer in model .get_layers ():
0 commit comments