Skip to content

Latest commit

 

History

History
38 lines (27 loc) · 1.81 KB

jiang11.md

File metadata and controls

38 lines (27 loc) · 1.81 KB

Analyzing Chroma Feature Types for Automated Chord Recognition

Nanzhu Jiang et al.

The computer-based harmonic analysis of music recordings with the goal to automatically extract chord labels directly from the given audio data constitutes a major task in music information retrieval. In most automated chord recognition procedures, the given music recording is first converted into a sequence of chroma-based audio features and then pattern matching techniques are applied to map the chroma features to chord labels. In this paper, we analyze the role of the feature extraction step within the recognition pipeline of various chord recognition procedures based on template matching strategies and hidden Markov models. In particular, we report on numerous experiments which show how the various procedures depend on the type of the underlying chroma feature as well as on parameters that control temporal and spectral aspects.

Source Code

Dataset

Evaluation

Further Information