Skip to content

Hyperparameter optimisation utility for lightgbm and xgboost using hyperopt.

License

Notifications You must be signed in to change notification settings

farazmah/hyperparameter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hyperparameter optimisation utility for lightgbm and xgboost using hyperopt

Installation

git clone git@github.com:farazmah/hyperparameter.git
cd hyperparamter/hyperparameter
python ../setup.py install

Usage example for lightGBM:

import pandas as pd
import numpy as np
from sklearn.model_selection import StratifiedKFold

df = pd.read_csv("hyperparameter/test/titanic_train.csv")
df = df.replace("", np.nan)
df = df.drop(['Cabin', 'Name', 'PassengerId', 'Ticket'], axis=1)
df = pd.get_dummies(columns=['Embarked', 'Sex'],data=df)
y_train = df.Survived.values
X_train = df.drop(['Survived'], axis=1).values

skf = StratifiedKFold(n_splits=3)

from hyperparameter.lgbm import LightgbmHyper
hpopt = LightgbmHyper(is_classifier=True)

hpopt.tune_model(ds_x=X_train, ds_y=y_train, folds=skf, eval_rounds = 20)
Out[1]: {'colsample_bytree': 0.9,
         'learning_rate': 0.17500000000000002,
         'max_depth': 19,
         'min_child_samples': 68,
         'min_sum_hessian_in_leaf': 0.256,
         'n_estimators': 505,
         'num_leaves': 186,
         'reg_alpha': 1.84,
         'reg_lambda': 0.35000000000000003,
         'subsample': 0.7000000000000001}

Usage example for xgboost (last three lines from example above changes to):

from hyperparameter.xgb import XgboostHyper
hpopt = XgboostHyper(is_classifier=True)

hpopt.tune_model(ds_x=X_train, ds_y=y_train, folds=skf, eval_rounds = 20)
Out[2]: {'colsample_bylevel': 0.65,
         'colsample_bytree': 0.5,
         'gamma': 0.75,
         'learning_rate': 0.24,
         'max_depth': 4,
         'min_child_weight': 6,
         'n_estimators': 1290,
         'reg_alpha': 2.0,
         'reg_lambda': 1.48,
         'subsample': 0.7000000000000001}

About

Hyperparameter optimisation utility for lightgbm and xgboost using hyperopt.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages