forked from neuralchen/SimSwap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblocks.py
325 lines (239 loc) · 8.84 KB
/
blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import spectral_norm
### single layers
def conv2d(*args, **kwargs):
return spectral_norm(nn.Conv2d(*args, **kwargs))
def convTranspose2d(*args, **kwargs):
return spectral_norm(nn.ConvTranspose2d(*args, **kwargs))
def embedding(*args, **kwargs):
return spectral_norm(nn.Embedding(*args, **kwargs))
def linear(*args, **kwargs):
return spectral_norm(nn.Linear(*args, **kwargs))
def NormLayer(c, mode='batch'):
if mode == 'group':
return nn.GroupNorm(c//2, c)
elif mode == 'batch':
return nn.BatchNorm2d(c)
### Activations
class GLU(nn.Module):
def forward(self, x):
nc = x.size(1)
assert nc % 2 == 0, 'channels dont divide 2!'
nc = int(nc/2)
return x[:, :nc] * torch.sigmoid(x[:, nc:])
class Swish(nn.Module):
def forward(self, feat):
return feat * torch.sigmoid(feat)
### Upblocks
class InitLayer(nn.Module):
def __init__(self, nz, channel, sz=4):
super().__init__()
self.init = nn.Sequential(
convTranspose2d(nz, channel*2, sz, 1, 0, bias=False),
NormLayer(channel*2),
GLU(),
)
def forward(self, noise):
noise = noise.view(noise.shape[0], -1, 1, 1)
return self.init(noise)
def UpBlockSmall(in_planes, out_planes):
block = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False),
NormLayer(out_planes*2), GLU())
return block
class UpBlockSmallCond(nn.Module):
def __init__(self, in_planes, out_planes, z_dim):
super().__init__()
self.in_planes = in_planes
self.out_planes = out_planes
self.up = nn.Upsample(scale_factor=2, mode='nearest')
self.conv = conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False)
which_bn = functools.partial(CCBN, which_linear=linear, input_size=z_dim)
self.bn = which_bn(2*out_planes)
self.act = GLU()
def forward(self, x, c):
x = self.up(x)
x = self.conv(x)
x = self.bn(x, c)
x = self.act(x)
return x
def UpBlockBig(in_planes, out_planes):
block = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False),
NoiseInjection(),
NormLayer(out_planes*2), GLU(),
conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False),
NoiseInjection(),
NormLayer(out_planes*2), GLU()
)
return block
class UpBlockBigCond(nn.Module):
def __init__(self, in_planes, out_planes, z_dim):
super().__init__()
self.in_planes = in_planes
self.out_planes = out_planes
self.up = nn.Upsample(scale_factor=2, mode='nearest')
self.conv1 = conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False)
self.conv2 = conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False)
which_bn = functools.partial(CCBN, which_linear=linear, input_size=z_dim)
self.bn1 = which_bn(2*out_planes)
self.bn2 = which_bn(2*out_planes)
self.act = GLU()
self.noise = NoiseInjection()
def forward(self, x, c):
# block 1
x = self.up(x)
x = self.conv1(x)
x = self.noise(x)
x = self.bn1(x, c)
x = self.act(x)
# block 2
x = self.conv2(x)
x = self.noise(x)
x = self.bn2(x, c)
x = self.act(x)
return x
class SEBlock(nn.Module):
def __init__(self, ch_in, ch_out):
super().__init__()
self.main = nn.Sequential(
nn.AdaptiveAvgPool2d(4),
conv2d(ch_in, ch_out, 4, 1, 0, bias=False),
Swish(),
conv2d(ch_out, ch_out, 1, 1, 0, bias=False),
nn.Sigmoid(),
)
def forward(self, feat_small, feat_big):
return feat_big * self.main(feat_small)
### Downblocks
class SeparableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=False):
super(SeparableConv2d, self).__init__()
self.depthwise = conv2d(in_channels, in_channels, kernel_size=kernel_size,
groups=in_channels, bias=bias, padding=1)
self.pointwise = conv2d(in_channels, out_channels,
kernel_size=1, bias=bias)
def forward(self, x):
out = self.depthwise(x)
out = self.pointwise(out)
return out
class DownBlock(nn.Module):
def __init__(self, in_planes, out_planes, separable=False):
super().__init__()
if not separable:
self.main = nn.Sequential(
conv2d(in_planes, out_planes, 4, 2, 1),
NormLayer(out_planes),
nn.LeakyReLU(0.2, inplace=True),
)
else:
self.main = nn.Sequential(
SeparableConv2d(in_planes, out_planes, 3),
NormLayer(out_planes),
nn.LeakyReLU(0.2, inplace=True),
nn.AvgPool2d(2, 2),
)
def forward(self, feat):
return self.main(feat)
class DownBlockPatch(nn.Module):
def __init__(self, in_planes, out_planes, separable=False):
super().__init__()
self.main = nn.Sequential(
DownBlock(in_planes, out_planes, separable),
conv2d(out_planes, out_planes, 1, 1, 0, bias=False),
NormLayer(out_planes),
nn.LeakyReLU(0.2, inplace=True),
)
def forward(self, feat):
return self.main(feat)
### CSM
class ResidualConvUnit(nn.Module):
def __init__(self, cin, activation, bn):
super().__init__()
self.conv = nn.Conv2d(cin, cin, kernel_size=3, stride=1, padding=1, bias=True)
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
return self.skip_add.add(self.conv(x), x)
class FeatureFusionBlock(nn.Module):
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, lowest=False):
super().__init__()
self.deconv = deconv
self.align_corners = align_corners
self.expand = expand
out_features = features
if self.expand==True:
out_features = features//2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, *xs):
output = xs[0]
if len(xs) == 2:
output = self.skip_add.add(output, xs[1])
output = nn.functional.interpolate(
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
)
output = self.out_conv(output)
return output
### Misc
class NoiseInjection(nn.Module):
def __init__(self):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1), requires_grad=True)
def forward(self, feat, noise=None):
if noise is None:
batch, _, height, width = feat.shape
noise = torch.randn(batch, 1, height, width).to(feat.device)
return feat + self.weight * noise
class CCBN(nn.Module):
''' conditional batchnorm '''
def __init__(self, output_size, input_size, which_linear, eps=1e-5, momentum=0.1):
super().__init__()
self.output_size, self.input_size = output_size, input_size
# Prepare gain and bias layers
self.gain = which_linear(input_size, output_size)
self.bias = which_linear(input_size, output_size)
# epsilon to avoid dividing by 0
self.eps = eps
# Momentum
self.momentum = momentum
self.register_buffer('stored_mean', torch.zeros(output_size))
self.register_buffer('stored_var', torch.ones(output_size))
def forward(self, x, y):
# Calculate class-conditional gains and biases
gain = (1 + self.gain(y)).view(y.size(0), -1, 1, 1)
bias = self.bias(y).view(y.size(0), -1, 1, 1)
out = F.batch_norm(x, self.stored_mean, self.stored_var, None, None,
self.training, 0.1, self.eps)
return out * gain + bias
class Interpolate(nn.Module):
"""Interpolation module."""
def __init__(self, size, mode='bilinear', align_corners=False):
"""Init.
Args:
scale_factor (float): scaling
mode (str): interpolation mode
"""
super(Interpolate, self).__init__()
self.interp = nn.functional.interpolate
self.size = size
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: interpolated data
"""
x = self.interp(
x,
size=self.size,
mode=self.mode,
align_corners=self.align_corners,
)
return x