-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
102 lines (84 loc) · 3.33 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright Niantic 2019. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Monodepth2 licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
from __future__ import absolute_import, division, print_function
import os
import hashlib
import zipfile
import random
import torch
# from six.moves import urllib
def readlines(filename):
"""Read all the lines in a text file and return as a list
"""
with open(filename, 'r') as f:
lines = f.read().splitlines()
return lines
def normalize_image(x):
"""Rescale image pixels to span range [0, 1]
"""
ma = float(x.max().cpu().data)
mi = float(x.min().cpu().data)
d = ma - mi if ma != mi else 1e5
return (x - mi) / d
def sec_to_hm(t):
"""Convert time in seconds to time in hours, minutes and seconds
e.g. 10239 -> (2, 50, 39)
"""
t = int(t)
s = t % 60
t //= 60
m = t % 60
t //= 60
return t, m, s
def sec_to_hm_str(t):
"""Convert time in seconds to a nice string
e.g. 10239 -> '02h50m39s'
"""
h, m, s = sec_to_hm(t)
return "{:02d}h{:02d}m{:02d}s".format(h, m, s)
class ImagePool:
"""This class implements an image buffer that stores previously generated images.
This buffer enables us to update discriminators using a history of generated images
rather than the ones produced by the latest generators.
"""
def __init__(self, pool_size):
"""Initialize the ImagePool class
Parameters:
pool_size (int) -- the size of image buffer, if pool_size=0, no buffer will be created
"""
self.pool_size = pool_size
if self.pool_size > 0: # create an empty pool
self.num_imgs = 0
self.images = []
def query(self, images):
"""Return an image from the pool.
Parameters:
images: the latest generated images from the generator
Returns images from the buffer.
By 50/100, the buffer will return input images.
By 50/100, the buffer will return images previously stored in the buffer,
and insert the current images to the buffer.
"""
if self.pool_size == 0: # if the buffer size is 0, do nothing
return images
return_images = []
for image in images:
image = torch.unsqueeze(image.data, 0)
if self.num_imgs < self.pool_size: # if the buffer is not full; keep inserting current images to the buffer
self.num_imgs = self.num_imgs + 1
self.images.append(image)
return_images.append(image)
else:
p = random.uniform(0, 1)
if p > 0.5: # by 50% chance, the buffer will return a previously stored image, and insert the current image into the buffer
random_id = random.randint(0, self.pool_size - 1) # randint is inclusive
tmp = self.images[random_id].clone()
self.images[random_id] = image
return_images.append(tmp)
else: # by another 50% chance, the buffer will return the current image
return_images.append(image)
return_images = torch.cat(return_images, 0) # collect all the images and return
return return_images