-
Notifications
You must be signed in to change notification settings - Fork 95
/
utils.lua
244 lines (203 loc) · 8.02 KB
/
utils.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
--
-- Copyright (c) 2016-2017, Fangchang Ma.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
require "image"
require 'nn'
local utils = {}
function utils.lg10(x)
return torch.div(torch.log(x), math.log(10))
end
-- return the total number of valid pixels in a batch
function utils.nValidElement(x)
return torch.sum(torch.eq(x, x))
end
-- return the total number of nan in a batch
function utils.nNanElement(x)
return torch.sum(torch.ne(x, x))
end
function utils.getNanMask(x)
return torch.ne(x, x) -- since NaN != NaN in torch
end
function utils.maxOfTwo(x, y)
local z = x:clone()
local maskYLarger = torch.lt(x, y) -- true if x < y
z[maskYLarger] = y[maskYLarger]
return z
end
-- return two new tensors, where pixels corresponding to NaN in target are set to 0
function utils.setNanToZero(input, target)
local nanMask = utils.getNanMask(target)
nValidElement = utils.nValidElement(target)
local _input = input:clone()
_input[nanMask] = 0
local _target = target:clone()
_target[nanMask] = 0
return _input, _target, nanMask, nValidElement
end
function utils.setNanTo0(input)
local nanMask = utils.getNanMask(input)
local output = input:clone()
output[nanMask] = 0
return output
end
function utils.setZeroToNan(input)
input[torch.le(input, 0)] = 0/0
end
-- permute order of dimensions, since the order is different in Matlab vs. Torch
function utils.matlabToTorchTensor(tensorMatlab)
local tensorTorch = torch.Tensor(tensorMatlab:size(3), tensorMatlab:size(1), tensorMatlab:size(2))
for channel = 1, tensorMatlab:size(3) do
tensorTorch[{channel, {}, {}}] = tensorMatlab[{{}, {}, channel}]
end
return tensorTorch
end
function utils.rgb2gray(rgb)
assert( rgb:dim() == 3, "expect 3-dim rgb input, but instead got input with dimension=" .. rgb:dim() )
local z = torch.Tensor(1, rgb:size(2), rgb:size(3))
-- Same as Matlab: 0.2989 * R + 0.587 * G + 0.114 * B
z[{1, {}, {}}] = rgb:select(1, 1) * 0.2989 + rgb:select(1, 2) * 0.587 + rgb:select(1, 3) * 0.114
-- z = z:round()
return z
end
function utils.getGradient(input)
-- local laplacianKernel = image.laplacian(3, 1)
local kernel = torch.Tensor(1, 3, 3):typeAs(input)
kernel = kernel:zero()
kernel[1][2][1] = -1
kernel[1][2][3] = 1
kernel[1][1][1] = -1
kernel[1][3][1] = 1
local gradient = torch.Tensor(input:size()):typeAs(input)
image.convolve(gradient, input, kernel, 'same')
return gradient
end
function utils.getGradientCuda(input)
local s = nn.Sequential()
local layer = nn.SpatialConvolution(1,1,3,3,1,1,1,1)
layer.bias:zero()
layer.weight:zero()
-- interal filter
-- [0, -1, 0]
-- [-1, 0, 1]
-- [0, 1, 0]
layer.weight[1][1][2][1] = -1
layer.weight[1][1][2][3] = 1
layer.weight[1][1][1][2] = -1
layer.weight[1][1][3][2] = 1
s:add(layer)
local gradient = s:forward(input)
return gradient
-- -- local laplacianKernel = image.laplacian(3, 1)
-- local kernel = torch.Tensor(1, 3, 3):typeAs(input)
-- kernel = kernel:zero()
-- kernel[1][2][1] = -1
-- kernel[1][2][3] = 1
-- kernel[1][1][1] = -1
-- kernel[1][3][1] = 1
-- local gradient = torch.Tensor(input:size()):typeAs(input)
-- image.convolve(gradient, input, kernel, 'same')
-- return gradient
end
function utils.evaluateError(output, target)
assert( output, "output is nil")
assert( target, "target is nil")
assert( output:dim() == 4, "expect 4 dimensions in output, but instead got " .. output:dim())
assert( target:dim() == 4, "expect 4 dimensions in target, but instead got " .. target:dim())
assert( output:size(1) >= 1, 'invalid output batch size: ' .. output:size(1))
assert( target:size(1) >= 1, 'invalid target batch size: ' .. target:size(1))
local batchSize = output:size(1)
local errors = {
MSE = 0,
RMSE = 0,
ABS_REL = 0,
LG10 = 0,
MAE = 0,
PERC = 0, -- % of correct edge prediction for hybrid output
-- DELTA_i: % of pixels s.t. max(y_i / z_i, z_i / y_i) < DELTA^i, where DELTA = 1.25
DELTA1 = 0,
DELTA2 = 0,
DELTA3 = 0,
}
if output:size(2) == 1 then
_output = output:view(batchSize, -1)
_target = target:view(batchSize, -1)
_output, _target, nanMask, nValidElement = utils.setNanToZero(_output, _target)
if nValidElement > 0 then
-- Compute the difference
local diffMatrix = torch.abs(_output - _target)
-- Mean Squared Error
errors.MSE = torch.sum(torch.pow(diffMatrix, 2)) / nValidElement
-- Root Mean Squared Error
-- This overestimates the RMSE when batchsize > 1. Use batchsize=1 to get an accurate estimation
errors.RMSE = math.sqrt(errors.MSE)
-- Mean Absolute Error
errors.MAE = torch.sum(diffMatrix) / nValidElement
-- Mean Absolute Relative Error
local relMatrix = torch.cdiv(diffMatrix, _target)
relMatrix[nanMask] = 0
errors.ABS_REL = torch.sum(relMatrix) / nValidElement
-- release memory
relMatrix = nil
diffMatrix = nil
collectgarbage()
-- LOG10 Error
-- nan when prediction is negative
-- print('#(output<=0) = ' .. torch.sum(torch.le(output, 0)))
local LG10Matrix = torch.abs(utils.lg10(_output) - utils.lg10(_target))
LG10Matrix[nanMask] = 0
errors.LG10 = torch.sum(LG10Matrix) / nValidElement
LG10Matrix = nil
collectgarbage()
local yOverZ = torch.cdiv(_output, _target)
local zOverY = torch.cdiv(_target, _output)
local maxRatio = utils.maxOfTwo(yOverZ, zOverY)
errors.DELTA1 = torch.sum(torch.le(maxRatio, 1.25):typeAs(output)) / nValidElement
errors.DELTA2 = torch.sum(torch.le(maxRatio, math.pow(1.25,2)):typeAs(output)) / nValidElement
errors.DELTA3 = torch.sum(torch.le(maxRatio, math.pow(1.25,3)):typeAs(output)) / nValidElement
end
return errors
-- hybrid output
elseif output:size(2) == 3 then
error('TODO: implement utils.evaluateError() for hybrid output')
local depthOutput = torch.Tensor(batchSize, 1, output:size(3), output:size(4)):typeAs(output)
local depthTarget = torch.Tensor(batchSize, 1, output:size(3), output:size(4)):typeAs(target)
depthOutput[{{}, 1}] = output[{{}, 1}]
depthTarget[{{}, 1}] = target[{{}, 1}]
local predictionEdge = torch.gt(output[{{}, 3}], output[{{}, 2}]):typeAs(output) + 1
local predictionCorrect = torch.eq(predictionEdge, target[{{}, 2}])
local correctPercentage = torch.sum(predictionCorrect) / predictionCorrect:nElement()
errors = utils.evaluateError(depthOutput, depthTarget)
-- return mse, rmse, relErr, LG10Err, mae, correctPercentage
else
error('unknown prediction type')
end
end
function utils.addErrors(errorSum, errors, batchSize)
errorSum.MSE = errorSum.MSE + errors.MSE * batchSize
errorSum.RMSE = errorSum.RMSE + errors.RMSE * batchSize
errorSum.ABS_REL = errorSum.ABS_REL + errors.ABS_REL * batchSize
errorSum.LG10 = errorSum.LG10 + errors.LG10 * batchSize
errorSum.MAE = errorSum.MAE + errors.MAE * batchSize
errorSum.PERC = errorSum.PERC + errors.PERC * batchSize
errorSum.DELTA1 = errorSum.DELTA1 + errors.DELTA1 * batchSize
errorSum.DELTA2 = errorSum.DELTA2 + errors.DELTA2 * batchSize
errorSum.DELTA3 = errorSum.DELTA3 + errors.DELTA3 * batchSize
end
function utils.averageErrors(errorSum, N)
assert(N > 0, 'N must be positive, but instead got ' .. N)
errorSum.MSE = errorSum.MSE / N
errorSum.RMSE = errorSum.RMSE / N
errorSum.ABS_REL = errorSum.ABS_REL / N
errorSum.LG10 = errorSum.LG10 / N
errorSum.MAE = errorSum.MAE / N
errorSum.PERC = errorSum.PERC / N
errorSum.DELTA1 = errorSum.DELTA1 / N
errorSum.DELTA2 = errorSum.DELTA2 / N
errorSum.DELTA3 = errorSum.DELTA3 / N
end
return utils