diff --git a/README.md b/README.md index 9f0dc7d..da887dd 100644 --- a/README.md +++ b/README.md @@ -84,6 +84,8 @@ In findatapy/examples you will find several demos # Coding log +* 06 Aug 2019 + * Adding parameters to MarketDataRequest for user specified API keys (Quandl, FRED & Alphavantage) * 23 Jul 2019 * Changed some rolling calculations in Calculation class to work with newer pandas * 12 Jul 2019 diff --git a/findatapy/market/datavendorweb.py b/findatapy/market/datavendorweb.py index 354fe6c..8a64491 100644 --- a/findatapy/market/datavendorweb.py +++ b/findatapy/market/datavendorweb.py @@ -117,7 +117,7 @@ def download_daily(self, market_data_request): while(trials < 5): try: - data_frame = Quandl.get(market_data_request.tickers, authtoken=DataConstants().quandl_api_key, trim_start=market_data_request.start_date, + data_frame = Quandl.get(market_data_request.tickers, authtoken=market_data_request.quandl_api_key, trim_start=market_data_request.start_date, trim_end=market_data_request.finish_date) break @@ -204,7 +204,7 @@ def download_daily(self, market_data_request): for i in range(0, len(market_data_request.tickers)): while (trials < 5): try: - fred = Fred(api_key=DataConstants().fred_api_key) + fred = Fred(api_key=market_data_request.fred_api_key) # acceptable fields: close, actual-release, release-date-time-full if 'close' in market_data_request.fields and 'release-date-time-full' in market_data_request.fields: @@ -1240,7 +1240,7 @@ def download_tick(self, market_data_request): time_list = self.hour_range(market_data_request.start_date, market_data_request.finish_date) do_retrieve_df = True # convert inside loop? - multi_threaded = False # multithreading (can sometimes get errors but it's fine when retried) + multi_threaded = True # multithreading (can sometimes get errors but it's fine when retried) if multi_threaded: # use threading (not process interface) @@ -2219,7 +2219,7 @@ def load_ticker(self, market_data_request): def download(self, market_data_request): trials = 0 - ts = TimeSeries(key=DataConstants().alpha_vantage_api_key, output_format='pandas', indexing_type='date') + ts = TimeSeries(key=market_data_request.alpha_vantage_api_key, output_format='pandas', indexing_type='date') data_frame = None diff --git a/findatapy/market/marketdatarequest.py b/findatapy/market/marketdatarequest.py index 77a4e53..e53ae22 100644 --- a/findatapy/market/marketdatarequest.py +++ b/findatapy/market/marketdatarequest.py @@ -12,6 +12,7 @@ # See the License for the specific language governing permissions and limitations under the License. # +from findatapy.util.dataconstants import DataConstants from findatapy.util.loggermanager import LoggerManager from datetime import timedelta @@ -19,6 +20,9 @@ import copy +data_constants = DataConstants() + + class MarketDataRequest(object): """Provides parameters for requesting market data. @@ -56,22 +60,27 @@ def generate_key(self): """ from findatapy.market.ioengine import SpeedCache - if self.freq == 'daily': ticker = None - else: ticker = self.tickers[0] + if self.freq == 'daily': + ticker = None + else: + ticker = self.tickers[0] self.__category_key = self.create_category_key(self, ticker=ticker) - return SpeedCache().generate_key(self, ['logger', '_MarketDataRequest__abstract_curve', '_MarketDataRequest__cache_algo', + return SpeedCache().generate_key(self, ['logger', '_MarketDataRequest__abstract_curve', + '_MarketDataRequest__cache_algo', '_MarketDataRequest__overrides']) - def __init__(self, data_source = None, - start_date ='year', finish_date = datetime.datetime.utcnow(), - tickers = None, category = None, freq_mult = 1, freq = "daily", - gran_freq = None, cut = "NYC", - fields = ['close'], cache_algo = "internet_load_return", - vendor_tickers = None, vendor_fields = None, - environment = "backtest", trade_side = 'trade', expiry_date = None, resample = None, resample_how = 'last', - md_request = None, abstract_curve = None, overrides = {} + def __init__(self, data_source=None, + start_date='year', finish_date=datetime.datetime.utcnow(), + tickers=None, category=None, freq_mult=1, freq="daily", + gran_freq=None, cut="NYC", + fields=['close'], cache_algo="internet_load_return", + vendor_tickers=None, vendor_fields=None, + environment="backtest", trade_side='trade', expiry_date=None, resample=None, resample_how='last', + md_request=None, abstract_curve=None, quandl_api_key=data_constants.quandl_api_key, + fred_api_key=data_constants.fred_api_key, alpha_vantage_api_key=data_constants.alpha_vantage_api_key, + overrides={} ): # can deep copy MarketDataRequest (use a lock, so can be used with threading when downloading time series) @@ -96,20 +105,25 @@ def __init__(self, data_source = None, self.category = copy.deepcopy(md_request.category) # special predefined categories - self.cut = copy.deepcopy(md_request.cut) # closing time of the data (eg. NYC, LDN, TOK etc) - self.fields = copy.deepcopy(md_request.fields) # fields, eg. close, high, low, open - self.cache_algo = copy.deepcopy(md_request.cache_algo) # internet_load_return (cache_algo_return is for future use) + self.cut = copy.deepcopy(md_request.cut) # closing time of the data (eg. NYC, LDN, TOK etc) + self.fields = copy.deepcopy(md_request.fields) # fields, eg. close, high, low, open + self.cache_algo = copy.deepcopy( + md_request.cache_algo) # internet_load_return (cache_algo_return is for future use) self.vendor_tickers = copy.deepcopy(md_request.vendor_tickers) # define vendor tickers - self.vendor_fields = copy.deepcopy(md_request.vendor_fields) # define vendor fields - self.environment = copy.deepcopy(md_request.environment) # backtest environment only supported at present + self.vendor_fields = copy.deepcopy(md_request.vendor_fields) # define vendor fields + self.environment = copy.deepcopy( + md_request.environment) # backtest environment only supported at present self.trade_side = copy.deepcopy(md_request.trade_side) self.expiry_date = copy.deepcopy(md_request.expiry_date) self.resample = copy.deepcopy(md_request.resample) self.resample_how = copy.deepcopy(md_request.resample_how) self.abstract_curve = copy.deepcopy(md_request.abstract_curve) + self.quandl_api_key = copy.deepcopy(md_request.quandl_api_key) + self.fred_api_key = copy.deepcopy(md_request.fred_api_key) + self.alpha_vantage_api_key = copy.deepcopy(md_request.alpha_vantage_api_key) self.overrides = copy.deepcopy(md_request.overrides) - self.tickers = copy.deepcopy(md_request.tickers) # need this after category in case have wildcard + self.tickers = copy.deepcopy(md_request.tickers) # need this after category in case have wildcard else: self.freq_mult = freq_mult @@ -122,20 +136,24 @@ def __init__(self, data_source = None, self.data_source = data_source self.start_date = start_date self.finish_date = finish_date - self.category = category # special predefined categories - - self.cut = cut # closing time of the data (eg. NYC, LDN, TOK etc) - self.fields = fields # fields, eg. close, high, low, open - self.cache_algo = cache_algo # internet_load_return (cache_algo_return is for future use) - self.vendor_tickers = vendor_tickers # define vendor tickers - self.vendor_fields = vendor_fields # define vendor fields - self.environment = environment # backtest environment only supported at present + self.category = category # special predefined categories + + self.cut = cut # closing time of the data (eg. NYC, LDN, TOK etc) + self.fields = fields # fields, eg. close, high, low, open + self.cache_algo = cache_algo # internet_load_return (cache_algo_return is for future use) + self.vendor_tickers = vendor_tickers # define vendor tickers + self.vendor_fields = vendor_fields # define vendor fields + self.environment = environment # backtest environment only supported at present self.trade_side = trade_side self.expiry_date = expiry_date self.resample = resample self.resample_how = resample_how self.abstract_curve = abstract_curve + self.quandl_api_key = quandl_api_key + self.fred_api_key = fred_api_key + self.alpha_vantage_api_key = alpha_vantage_api_key + self.overrides = overrides self.tickers = tickers @@ -184,7 +202,8 @@ def data_source(self, data_source): if not data_source in valid_data_source: LoggerManager().getLogger(__name__).warning(data_source & " is not a defined data source.") - except: pass + except: + pass self.__data_source = data_source @@ -218,7 +237,7 @@ def tickers(self, tickers): if tick[-1] == "*" and tick[0] != "*": start = "^" - tick = start + "(" + tick.replace('*','') + ")" + tick = start + "(" + tick.replace('*', '') + ")" if config is None: from findatapy.util import ConfigManager @@ -287,7 +306,8 @@ def freq(self): def freq(self, freq): freq = freq.lower() - valid_freq = ['tick', 'second', 'minute', 'intraday', 'hourly', 'daily', 'weekly', 'monthly', 'quarterly', 'annually'] + valid_freq = ['tick', 'second', 'minute', 'intraday', 'hourly', 'daily', 'weekly', 'monthly', 'quarterly', + 'annually'] if not freq in valid_freq: LoggerManager().getLogger(__name__).warning(freq + " is not a defined frequency") @@ -303,7 +323,8 @@ def gran_freq(self, gran_freq): try: gran_freq = gran_freq.lower() - valid_gran_freq = ['tick', 'second', 'minute', 'hourly', 'pseudodaily', 'daily', 'weekly', 'monthly', 'quarterly', 'annually'] + valid_gran_freq = ['tick', 'second', 'minute', 'hourly', 'pseudodaily', 'daily', 'weekly', 'monthly', + 'quarterly', 'annually'] if not gran_freq in valid_gran_freq: LoggerManager().getLogger(__name__).warning(gran_freq & " is not a defined frequency") @@ -314,7 +335,8 @@ def gran_freq(self, gran_freq): self.__freq = 'tick' else: self.__freq = 'daily' - except: pass + except: + pass self.__gran_freq = gran_freq @@ -417,6 +439,7 @@ def date_parser(self, date): date1 = pandas.Timestamp(date) return date1 + @property def cache_algo(self): return self.__cache_algo @@ -427,7 +450,6 @@ def cache_algo(self, cache_algo): valid_cache_algo = ['internet_load', 'internet_load_return', 'cache_algo', 'cache_algo_return'] - if not cache_algo in valid_cache_algo: LoggerManager().getLogger(__name__).warning(cache_algo + " is not a defined caching scheme") @@ -441,7 +463,7 @@ def environment(self): def environment(self, environment): environment = environment.lower() - valid_environment= ['prod', 'backtest'] + valid_environment = ['prod', 'backtest'] if not environment in valid_environment: LoggerManager().getLogger(__name__).warning(environment + " is not a defined environment.") @@ -462,7 +484,7 @@ def trade_side(self, trade_side): LoggerManager().getLogger(__name__).warning(trade_side + " is not a defined trade side.") self.__trade_side = trade_side - + @property def expiry_date(self): return self.__expiry_date @@ -484,6 +506,30 @@ def abstract_curve(self, abstract_curve): self.__abstract_curve = abstract_curve + @property + def quandl_api_key(self): + return self.__quandl_api_key + + @quandl_api_key.setter + def quandl_api_key(self, quandl_api_key): + self.__quandl_api_key = quandl_api_key + + @property + def fred_api_key(self): + return self.__fred_api_key + + @fred_api_key.setter + def fred_api_key(self, fred_api_key): + self.__fred_api_key = fred_api_key + + @property + def alpha_vantage_api_key(self): + return self.__alpha_vantage_api_key + + @alpha_vantage_api_key.setter + def alpha_vantage_api_key(self, alpha_vantage_api_key): + self.__alpha_vantage_api_key = alpha_vantage_api_key + @property def overrides(self): return self.__overrides @@ -513,4 +559,4 @@ def _flatten_list(self, list_of_lists): # Otherwise call this function recursively else: result.extend(self._flatten_list(i)) - return result \ No newline at end of file + return result