forked from cuemacro/findatapy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalfred_example.py
77 lines (56 loc) · 3.87 KB
/
alfred_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
__author__ = 'saeedamen' # Saeed Amen
#
# Copyright 2016 Cuemacro
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the
# License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# See the License for the specific language governing permissions and limitations under the License.
#
if __name__ == '__main__':
###### below line CRUCIAL when running Windows, otherwise multiprocessing doesn't work! (not necessary on Linux)
from findatapy.util import SwimPool; SwimPool()
from findatapy.market import Market, MarketDataRequest, MarketDataGenerator
market = Market(market_data_generator=MarketDataGenerator())
# get the first release for GDP and also print the release date of that
md_request = MarketDataRequest(
start_date="01 Jun 2000", # start date (download data over past decade)
data_source='alfred', # use ALFRED/FRED as data source
tickers=['US GDP'], # ticker
fields=['actual-release', 'release-date-time-full'], # which fields to download
vendor_tickers=['GDP'], # ticker (FRED)
vendor_fields=['actual-release', 'release-date-time-full']) # which FRED fields to download
df = market.fetch_market(md_request)
print(df)
# compare the close and actual release of US GDP (and the final)
md_request = MarketDataRequest(
start_date="01 Jun 2000", # start date (download data over past decade)
data_source='alfred', # use ALFRED/FRED as data source
tickers=['US GDP'], # ticker
fields=['actual-release', 'close'], # which fields to download
vendor_tickers=['GDP'], # ticker (FRED)
vendor_fields=['actual-release', 'close']) # which FRED fields to download
df = market.fetch_market(md_request)
from chartpy import Chart, Style
style = Style(title="US GDP first vs last")
Chart().plot(df, style=style)
# get the change NFP SA (need to calculate that from the acutal-release and first-revision)
md_request = MarketDataRequest(
start_date="01 Jun 2000", # start date (download data over past decade)
data_source='alfred', # use ALFRED/FRED as data source
tickers=['US NFP'], # ticker
fields=['actual-release', 'first-revision', 'release-date-time-full'], # which fields to download
vendor_tickers=['PAYEMS'], # ticker (FRED)
vendor_fields=['actual-release', 'first-revision', 'release-date-time-full']) # which FRED fields to download
df = market.fetch_market(md_request)
# calculate the headline change in NFP
df['US NFP change'] = df['US NFP.actual-release'] - df['US NFP.first-revision'].shift(1)
print(df)
from chartpy import Chart, Style
import pandas
style = Style(title="US NFP change (actual)")
df1 = pandas.DataFrame(df['US NFP change'])
Chart().plot(df1, style=style)