forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_modeling_reformer.py
1141 lines (1028 loc) · 45.9 KB
/
test_modeling_reformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8 # Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
require_torch_multigpu,
slow,
torch_device,
)
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerConfig,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerTokenizer,
)
class ReformerModelTester:
def __init__(
self,
parent,
batch_size=None,
seq_length=None,
is_training=None,
is_decoder=None,
use_input_mask=None,
use_labels=None,
vocab_size=None,
attention_head_size=None,
hidden_size=None,
num_attention_heads=None,
local_attn_chunk_length=None,
local_num_chunks_before=None,
local_num_chunks_after=None,
num_buckets=None,
num_hashes=1,
lsh_attn_chunk_length=None,
lsh_num_chunks_before=None,
lsh_num_chunks_after=None,
chunk_size_lm_head=None,
chunk_size_feed_forward=None,
feed_forward_size=None,
hidden_act=None,
hidden_dropout_prob=None,
local_attention_probs_dropout_prob=None,
lsh_attention_probs_dropout_prob=None,
max_position_embeddings=None,
initializer_range=None,
axial_norm_std=None,
layer_norm_eps=None,
axial_pos_embds=None,
axial_pos_shape=None,
axial_pos_embds_dim=None,
attn_layers=None,
pad_token_id=None,
eos_token_id=None,
scope=None,
hash_seed=None,
num_labels=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.is_decoder = is_decoder
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.attention_head_size = attention_head_size
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = len(attn_layers)
self.local_attn_chunk_length = local_attn_chunk_length
self.local_num_chunks_after = local_num_chunks_after
self.local_num_chunks_before = local_num_chunks_before
self.num_hashes = num_hashes
self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets
self.lsh_attn_chunk_length = lsh_attn_chunk_length
self.lsh_num_chunks_after = lsh_num_chunks_after
self.lsh_num_chunks_before = lsh_num_chunks_before
self.hidden_act = hidden_act
self.feed_forward_size = feed_forward_size
self.hidden_dropout_prob = hidden_dropout_prob
self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob
self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.axial_pos_embds = axial_pos_embds
self.axial_pos_shape = tuple(axial_pos_shape)
self.axial_pos_embds_dim = tuple(axial_pos_embds_dim)
self.axial_norm_std = axial_norm_std
self.chunk_size_lm_head = chunk_size_lm_head
self.chunk_size_feed_forward = chunk_size_feed_forward
self.scope = scope
self.attn_layers = attn_layers
self.pad_token_id = pad_token_id
self.hash_seed = hash_seed
attn_chunk_length = local_attn_chunk_length if local_attn_chunk_length is not None else lsh_attn_chunk_length
num_chunks_after = local_num_chunks_after if local_num_chunks_after is not None else lsh_num_chunks_after
num_chunks_before = local_num_chunks_before if local_num_chunks_before is not None else lsh_num_chunks_before
self.encoder_seq_length = seq_length // attn_chunk_length + (self.seq_length % attn_chunk_length != 0)
self.key_length = (num_chunks_before + num_chunks_after + 1) * attn_chunk_length
self.chunk_length = attn_chunk_length
self.num_labels = num_labels
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
choice_labels = None
if self.use_labels:
choice_labels = ids_tensor([self.batch_size], 2)
config = ReformerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
feed_forward_size=self.feed_forward_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
local_attention_probs_dropout_prob=self.local_attention_probs_dropout_prob,
lsh_attention_probs_dropout_prob=self.lsh_attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
is_decoder=self.is_decoder,
axial_pos_embds=self.axial_pos_embds,
axial_pos_shape=self.axial_pos_shape,
axial_pos_embds_dim=self.axial_pos_embds_dim,
local_attn_chunk_length=self.local_attn_chunk_length,
local_num_chunks_after=self.local_num_chunks_after,
local_num_chunks_before=self.local_num_chunks_before,
num_hashes=self.num_hashes,
num_buckets=self.num_buckets,
lsh_attn_chunk_length=self.lsh_attn_chunk_length,
lsh_num_chunks_after=self.lsh_num_chunks_after,
lsh_num_chunks_before=self.lsh_num_chunks_before,
attn_layers=self.attn_layers,
pad_token_id=self.pad_token_id,
hash_seed=self.hash_seed,
return_dict=True,
)
return (
config,
input_ids,
input_mask,
choice_labels,
)
def create_and_check_reformer_model(self, config, input_ids, input_mask, choice_labels):
model = ReformerModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
# 2 * hidden_size because we use reversible resnet layers
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.seq_length, 2 * self.hidden_size)
)
def create_and_check_reformer_model_with_lm_backward(self, config, input_ids, input_mask, choice_labels):
config.is_decoder = False
config.lsh_num_chunks_after = 1
model = ReformerForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss = model(input_ids, attention_mask=input_mask, labels=input_ids)["loss"]
loss.backward()
def create_and_check_reformer_with_lm(self, config, input_ids, input_mask, choice_labels):
config.lsh_num_chunks_after = 0
config.is_decoder = True
model = ReformerModelWithLMHead(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_reformer_with_mlm(self, config, input_ids, input_mask, choice_labels):
config.is_decoder = False
model = ReformerForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_reformer_model_with_attn_mask(
self, config, input_ids, input_mask, choice_labels, is_decoder=False
):
# no special position embeddings
config.axial_pos_embds = False
config.is_decoder = is_decoder
if self.lsh_attn_chunk_length is not None:
# need to set chunk length equal sequence length to be certain that chunking works
config.lsh_attn_chunk_length = self.seq_length
model = ReformerModel(config=config)
model.to(torch_device)
model.eval()
# set all position encodings to zero so that postions don't matter
with torch.no_grad():
embedding = model.embeddings.position_embeddings.embedding
embedding.weight = torch.nn.Parameter(torch.zeros(embedding.weight.shape).to(torch_device))
embedding.weight.requires_grad = False
half_seq_len = self.seq_length // 2
roll = self.chunk_length
half_input_ids = input_ids[:, :half_seq_len]
# normal padded
attn_mask = torch.cat(
[torch.ones_like(half_input_ids), torch.zeros_like(half_input_ids)],
dim=-1,
)
input_ids_padded = torch.cat(
[half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)],
dim=-1,
)
# shifted padded
input_ids_roll = torch.cat(
[half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)],
dim=-1,
)
input_ids_roll = torch.roll(input_ids_roll, roll, dims=-1)
attn_mask_roll = torch.roll(attn_mask, roll, dims=-1)
output_padded = model(input_ids_padded, attention_mask=attn_mask)[0][:, :half_seq_len]
output_padded_rolled = model(input_ids_roll, attention_mask=attn_mask_roll)[0][:, roll : half_seq_len + roll]
self.parent.assertTrue(torch.allclose(output_padded, output_padded_rolled, atol=1e-3))
def create_and_check_reformer_layer_dropout_seed(
self, config, input_ids, input_mask, choice_labels, is_decoder=False
):
config.is_decoder = is_decoder
layer = ReformerLayer(config).to(torch_device)
layer.train()
shape = (
self.batch_size,
self.seq_length,
config.hidden_size,
) # Batch x SeqLen x hiddenSize
# get random tensors
hidden_states = floats_tensor(shape)
prev_attn_output = floats_tensor(shape)
# now the random seeds for attention and feed forward is initialized
# forward tensors with dropout
layer_outputs = layer(prev_attn_output, hidden_states, attention_mask=input_mask)
next_attn_output = layer_outputs.attn_output
next_hidden_states = layer_outputs.hidden_states
torch.manual_seed(layer.attention_seed)
attn_outputs = layer.attention(hidden_states, attention_mask=input_mask)
self.parent.assertTrue(
torch.allclose(
prev_attn_output + attn_outputs.hidden_states,
next_attn_output,
atol=1e-3,
)
)
torch.manual_seed(layer.feed_forward_seed)
feed_forward_hidden_states = layer.feed_forward(next_attn_output)
self.parent.assertTrue(
torch.allclose(
next_hidden_states,
hidden_states + feed_forward_hidden_states,
atol=1e-3,
)
)
def create_and_check_reformer_feed_backward_chunking(self, config, input_ids, input_mask, choice_labels):
if not self.is_training:
return
# disable dropout
config.hidden_dropout_prob = 0
config.local_attention_probs_dropout_prob = 0
config.lsh_attention_probs_dropout_prob = 0
config.lsh_num_chunks_after = 1
config.is_decoder = False
torch.manual_seed(0)
model = ReformerForMaskedLM(config=config)
model.to(torch_device)
model.train()
model.zero_grad()
loss_no_chunk, output_no_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2]
loss_no_chunk.backward()
grad_slice_word_no_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
grad_slice_position_factor_1_no_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
grad_slice_position_factor_2_no_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
config.chunk_size_lm_head = 1
config.chunk_size_feed_forward = 1
torch.manual_seed(0)
model = ReformerForMaskedLM(config=config)
model.to(torch_device)
model.train()
model.zero_grad()
loss_chunk, output_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2]
loss_chunk.backward()
grad_slice_word_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
grad_slice_position_factor_1_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
grad_slice_position_factor_2_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
self.parent.assertTrue(torch.allclose(loss_chunk, loss_no_chunk, atol=1e-3))
self.parent.assertTrue(torch.allclose(grad_slice_word_no_chunk, grad_slice_word_chunk, atol=1e-3))
self.parent.assertTrue(
torch.allclose(grad_slice_position_factor_1_chunk, grad_slice_position_factor_1_no_chunk, atol=1e-3)
)
self.parent.assertTrue(
torch.allclose(grad_slice_position_factor_2_chunk, grad_slice_position_factor_2_no_chunk, atol=1e-3)
)
def create_and_check_reformer_random_seed(self, config, input_ids, input_mask, choice_labels):
layer = ReformerLayer(config).to(torch_device)
layer.train()
shape = (
self.batch_size,
self.seq_length,
config.hidden_size,
) # Batch x SeqLen x hiddenSize
hidden_states = floats_tensor(shape)
attn_output = floats_tensor(shape)
seeds = []
for _ in range(100):
layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask)
attn_output = layer_outputs.attn_output
hidden_states = layer_outputs.hidden_states
torch.manual_seed(layer.attention_seed)
seeds.append(layer.attention_seed)
self.parent.assertGreater(len(set(seeds)), 70)
seeds = []
for _ in range(100):
layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask)
attn_output = layer_outputs.attn_output
hidden_states = layer_outputs.hidden_states
torch.manual_seed(layer.feed_forward_seed)
seeds.append(layer.feed_forward_seed)
self.parent.assertGreater(len(set(seeds)), 70)
def create_and_check_reformer_model_fp16_forward(self, config, input_ids, input_mask, choice_labels):
model = ReformerModel(config=config)
model.to(torch_device)
model.half()
model.eval()
output = model(input_ids, attention_mask=input_mask)["last_hidden_state"]
self.parent.assertFalse(torch.isnan(output).any().item())
def create_and_check_reformer_model_generate(self, config, input_ids, input_mask, choice_labels):
config.is_decoder = True
config.lsh_num_chunks_after = 0
config.bos_token_id = 0
config.eos_token_id = None
config.max_length = 20
model = ReformerModelWithLMHead(config=config)
model.to(torch_device)
model.eval()
output = model.generate()
self.parent.assertIsNotNone(output)
def create_and_check_reformer_model_fp16_generate(self, config, input_ids, input_mask, choice_labels):
config.is_decoder = True
config.lsh_num_chunks_after = 0
model = ReformerModelWithLMHead(config=config)
model.to(torch_device)
model.half()
model.eval()
# only use last 10 inputs for generation
output = model.generate(input_ids[:, -10:], attention_mask=input_mask, do_sample=False)
self.parent.assertFalse(torch.isnan(output).any().item())
def create_and_check_reformer_no_chunking(self, config, input_ids, input_mask, choice_labels):
# force chunk length to be bigger than input_ids
config.lsh_attn_chunk_length = 2 * input_ids.shape[-1]
config.local_attn_chunk_length = 2 * input_ids.shape[-1]
config.lsh_num_chunks_after = 1
config.is_decoder = False
model = ReformerForMaskedLM(config=config)
model.to(torch_device)
model.eval()
output_logits = model(input_ids, attention_mask=input_mask)["logits"]
self.parent.assertTrue(output_logits.shape[1] == input_ids.shape[-1])
def create_and_check_reformer_for_question_answering(self, config, input_ids, input_mask, choice_labels):
model = ReformerForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
start_positions=choice_labels,
end_positions=choice_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_past_buckets_states(self, config, input_ids, input_mask, choice_labels):
config.is_decoder = True
config.lsh_num_chunks_before = 1
config.lsh_num_chunks_after = 0
model = ReformerModelWithLMHead(config=config)
model.to(torch_device)
model.eval()
input_ids_first = input_ids[:, :-1]
input_ids_second = input_ids[:, -1:]
# return saved cache
past_buckets_states = model(input_ids_first, use_cache=True)["past_buckets_states"]
# calculate last output with and without cache
outputs_with_cache = model(input_ids_second, past_buckets_states=past_buckets_states, use_cache=True)["logits"]
outputs_without_cache = model(input_ids)["logits"][:, -1]
# select random slice idx
random_slice_idx = torch.randint(outputs_without_cache.shape[-1], (1, 1), device=torch_device).item()
# outputs should be similar within range
self.parent.assertTrue(
torch.allclose(
outputs_with_cache[:, 0, random_slice_idx], outputs_without_cache[:, random_slice_idx], atol=1e-2
)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, choice_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
def create_and_check_reformer_for_sequence_classification(
self, config, input_ids, input_mask, choice_labels, is_decoder
):
config.is_decoder = is_decoder
sequence_labels = ids_tensor([self.batch_size], config.num_labels)
model = ReformerForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
class ReformerTesterMixin:
"""
Reformer Local and Reformer LSH run essentially the same tests
"""
def test_config(self):
self.config_tester.run_common_tests()
def test_reformer_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_model(*config_and_inputs)
def test_reformer_lm_model_backward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_model_with_lm_backward(*config_and_inputs)
def test_reformer_model_attn_masking(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=True)
self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=False)
def test_reformer_with_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_with_lm(*config_and_inputs)
def test_reformer_with_mlm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_with_mlm(*config_and_inputs)
def test_reformer_layer_training_dropout(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=True)
self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=False)
def test_reformer_chunking_backward_equality(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_feed_backward_chunking(*config_and_inputs)
def test_reformer_no_chunking(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_no_chunking(*config_and_inputs)
def test_reformer_qa_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_for_question_answering(*config_and_inputs)
def test_reformer_cached_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_past_buckets_states(*config_and_inputs)
def test_reformer_cached_generate(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_model_generate(*config_and_inputs)
@slow
def test_dropout_random_seed_is_changing(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_random_seed(*config_and_inputs)
@unittest.skipIf(torch_device == "cpu", "Cant do half precision")
def test_reformer_model_fp16_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_model_fp16_forward(*config_and_inputs)
@unittest.skipIf(torch_device == "cpu", "Cant do half precision")
def test_reformer_model_fp16_generate(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_model_fp16_generate(*config_and_inputs)
@require_torch_multigpu
def test_multigpu_data_parallel_forward(self):
# Opt-out of this test.
pass
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reformer_for_sequence_classification(*config_and_inputs, is_decoder=False)
@require_torch
class ReformerLocalAttnModelTest(ReformerTesterMixin, ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering)
if is_torch_available()
else ()
)
all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else ()
test_pruning = False
test_headmasking = False
test_torchscript = False
def prepare_kwargs(self):
return {
"batch_size": 13,
"seq_length": 32,
"is_training": True,
"is_decoder": True,
"use_input_mask": True,
"use_labels": True,
"vocab_size": 32,
"attention_head_size": 16,
"hidden_size": 32,
"num_attention_heads": 2,
"local_attn_chunk_length": 4,
"local_num_chunks_before": 1,
"local_num_chunks_after": 0,
"chunk_size_lm_head": 0,
"chunk_size_feed_forward": 0,
"feed_forward_size": 32,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"local_attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"initializer_range": 0.02,
"axial_norm_std": 1.0,
"layer_norm_eps": 1e-12,
"axial_pos_embds": True,
"axial_pos_shape": [4, 8],
"axial_pos_embds_dim": [16, 16],
"attn_layers": ["local", "local", "local", "local"],
"pad_token_id": 0,
"eos_token_id": 2,
"scope": None,
"hash_seed": 0,
"num_labels": 2,
}
def setUp(self):
tester_kwargs = self.prepare_kwargs()
self.model_tester = ReformerModelTester(self, **tester_kwargs)
self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37)
@slow
def test_model_from_pretrained(self):
for model_name in REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ReformerModelWithLMHead.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class ReformerLSHAttnModelTest(ReformerTesterMixin, ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering)
if is_torch_available()
else ()
)
all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else ()
test_pruning = False
test_headmasking = False
test_torchscript = False
def prepare_kwargs(self):
return {
"batch_size": 13,
"seq_length": 13,
"use_input_mask": True,
"use_labels": True,
"is_training": False,
"is_decoder": True,
"vocab_size": 32,
"attention_head_size": 16,
"hidden_size": 64,
"num_attention_heads": 2,
"num_buckets": 2,
"num_hashes": 4,
"lsh_attn_chunk_length": 4,
"lsh_num_chunks_before": 1,
"lsh_num_chunks_after": 0,
"chunk_size_lm_head": 5,
"chunk_size_feed_forward": 6,
"feed_forward_size": 32,
"hidden_act": "relu",
"hidden_dropout_prob": 0.1,
"lsh_attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"initializer_range": 0.02,
"axial_norm_std": 1.0,
"layer_norm_eps": 1e-12,
"axial_pos_embds": True,
"axial_pos_shape": [4, 8],
"axial_pos_embds_dim": [16, 48],
# sanotheu
# "attn_layers": ["lsh", "lsh", "lsh", "lsh"],
"attn_layers": ["lsh"],
"pad_token_id": 0,
"eos_token_id": 2,
"scope": None,
"hash_seed": 0,
"num_labels": 2,
}
def setUp(self):
tester_kwargs = self.prepare_kwargs()
self.model_tester = ReformerModelTester(self, **tester_kwargs)
self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37)
@require_torch
@require_sentencepiece
@require_tokenizers
class ReformerIntegrationTests(unittest.TestCase):
"""
These integration tests test the current layer activations and gradients againts the output of the Hugging Face Reformer model at time of integration: 29/06/2020. During integration, the model was tested against the output of the official Trax ReformerLM model for various cases ("lsh" only, "local" only, masked / non-masked, different chunk length, ....). In order to recover the original trax integration tests, one should use patrickvonplaten's fork of trax and the code that lives on the branch `reformer_trax_tests`.
"""
def _get_basic_config_and_input(self):
config = {
"vocab_size": 320,
"attention_head_size": 8,
"hidden_size": 16,
"num_attention_heads": 2,
"num_buckets": 2,
"num_hashes": 4,
"lsh_attn_chunk_length": 4,
"local_attn_chunk_length": 4,
"lsh_num_chunks_before": 1,
"lsh_num_chunks_after": 0,
"local_num_chunks_before": 1,
"local_num_chunks_after": 0,
"chunk_size_lm_head": 0,
"chunk_size_feed_forward": 0,
"feed_forward_size": 32,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.0,
"lsh_attention_probs_dropout_prob": 0.0,
"local_attention_probs_dropout_prob": 0.0,
"max_position_embeddings": 32,
"initializer_range": 0.02,
"axial_norm_std": 1.0,
"layer_norm_eps": 1e-12,
"sinusoidal_pos_embds": False,
"axial_pos_embds": True,
"axial_pos_shape": [4, 8],
"axial_pos_embds_dim": [8, 8],
"hash_seed": 0,
"is_decoder": True,
}
return config
def _get_hidden_states(self):
return torch.tensor(
[
[
[
1.90826353e00,
-1.45999730e00,
-6.20405462e-01,
1.52503433e00,
-3.64464232e-01,
-8.27359235e-01,
8.39670803e-01,
2.44492178e-01,
4.98332758e-01,
2.69175139e00,
-7.08081422e-03,
1.04915401e00,
-1.83476661e00,
7.67220476e-01,
2.98580543e-01,
2.84803992e-02,
],
[
-2.66374286e-02,
4.33497576e-01,
3.10386309e-01,
5.46039944e-01,
-2.47292666e-04,
-7.52305019e-01,
2.39162103e-01,
7.25216186e-01,
-7.58357372e-01,
4.20635998e-01,
-4.04739919e-02,
1.59924145e-01,
2.05135748e00,
-1.15997978e00,
5.37166397e-01,
2.62873606e-01,
],
[
1.85247482e-01,
7.07046037e-01,
-6.77089715e-01,
-2.24209655e00,
-3.75307980e-02,
-8.59380874e-01,
-2.81027884e00,
1.01276376e00,
-1.69438001e00,
4.17574660e-01,
-1.49196962e00,
-1.76483717e00,
-1.94566312e-01,
-1.71183858e00,
7.72903565e-01,
-1.11557056e00,
],
[
9.46069193e-01,
1.53417623e-01,
-9.58686996e-01,
1.18126669e-01,
1.75967724e00,
1.62194590e00,
-5.74108159e-01,
6.79920443e-01,
5.44028163e-01,
2.05466114e-01,
-3.63045868e-01,
2.41865062e-01,
3.20348382e-01,
-9.05611176e-01,
-1.92690727e-01,
-1.19917547e00,
],
]
],
dtype=torch.float32,
device=torch_device,
)
def _get_attn_mask(self):
return torch.tensor([[0, 1, 0, 0]], dtype=torch.long, device=torch_device)
def _get_input_ids_and_mask(self):
mask = torch.tensor(
[
[1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0],
],
dtype=torch.long,
device=torch_device,
)
input_ids = torch.tensor(
[
[
89,
279,
286,
84,
194,
316,
182,
28,
283,
37,
169,
7,
253,
267,
107,
250,
44,
7,
102,
62,
3,
243,
171,
265,
302,
48,
164,
264,
148,
229,
280,
150,
],
[
9,
192,
66,
112,
163,
83,
135,
70,
224,
96,
31,
80,
196,
80,
63,
22,
85,
100,
47,
283,
0,
163,
126,
143,
195,
82,
53,
82,
18,
27,
182,
52,
],
],
dtype=torch.long,
device=torch_device,
)
return input_ids, mask
def test_lsh_layer_forward(self):
config = self._get_basic_config_and_input()
config["lsh_num_chunks_before"] = 0
config["attn_layers"] = ["lsh"]
config["is_decoder"] = False
hidden_states = self._get_hidden_states()
torch.manual_seed(0)
layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
layer.eval()
reformer_output = layer(prev_attn_output=hidden_states.clone(), hidden_states=hidden_states)
output_slice = reformer_output.hidden_states[0, 0, :5]
expected_output_slice = torch.tensor(
[1.6879, -1.3083, -0.4708, 1.3555, -0.6292],
dtype=torch.float,
device=torch_device,
)
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
def test_lsh_layer_forward_complex(self):
config = self._get_basic_config_and_input()
config["lsh_num_chunks_before"] = 0
config["attn_layers"] = ["lsh"]
config["num_buckets"] = [2, 4]
attn_mask = self._get_attn_mask()
hidden_states = self._get_hidden_states()
torch.manual_seed(0)
layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
layer.eval()
reformer_output = layer(
prev_attn_output=hidden_states.clone(),
hidden_states=hidden_states,
attention_mask=attn_mask,
)
output_slice = reformer_output.hidden_states[0, 0, :5]
expected_output_slice = torch.tensor(
[1.6439, -1.2306, -0.5108, 1.3006, -0.6537],
dtype=torch.float,
device=torch_device,
)
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
def test_local_layer_forward(self):
config = self._get_basic_config_and_input()
config["local_num_chunks_before"] = 0
config["attn_layers"] = ["local"]
config["is_decoder"] = False
hidden_states = self._get_hidden_states()
torch.manual_seed(0)
layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
layer.eval()
reformer_output = layer(prev_attn_output=hidden_states, hidden_states=hidden_states)
output_slice = reformer_output.hidden_states[0, 0, :5]
expected_output_slice = torch.tensor(
[1.4212, -2.0576, -0.9688, 1.4599, -0.1344],
dtype=torch.float,
device=torch_device,
)
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
def test_local_layer_forward_complex(self):
config = self._get_basic_config_and_input()
config["local_num_chunks_before"] = 0
config["attn_layers"] = ["local"]
attn_mask = self._get_attn_mask()
hidden_states = self._get_hidden_states()
torch.manual_seed(0)
layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
layer.eval()
reformer_output = layer(
prev_attn_output=hidden_states,
hidden_states=hidden_states,
attention_mask=attn_mask,
)
output_slice = reformer_output.hidden_states[0, 0, :5]
expected_output_slice = torch.tensor(
[1.4750, -2.0235, -0.9743, 1.4463, -0.1269],
dtype=torch.float,
device=torch_device,
)
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
def test_lsh_model_forward(self):
config = self._get_basic_config_and_input()
config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"]
config["num_buckets"] = [2, 4]
torch.manual_seed(0)
model = ReformerModel(ReformerConfig(**config)).to(torch_device)
model.eval()
input_ids, attn_mask = self._get_input_ids_and_mask()
hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
output_slice = hidden_states[0, 0, :5]
expected_output_slice = torch.tensor(
[-0.9896, -0.9396, -1.0831, -0.0597, 0.2456],
dtype=torch.float,
device=torch_device,
)
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))