forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconftest.py
65 lines (52 loc) · 2.13 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# we define a fixture function below and it will be "used" by
# referencing its name from tests
import os
import pytest
from attr import dataclass
os.environ["AWS_DEFAULT_REGION"] = "us-east-1" # defaults region
@dataclass
class SageMakerTestEnvironment:
framework: str
role = "arn:aws:iam::558105141721:role/sagemaker_execution_role"
hyperparameters = {
"task_name": "mnli",
"per_device_train_batch_size": 16,
"per_device_eval_batch_size": 16,
"do_train": True,
"do_eval": True,
"do_predict": True,
"output_dir": "/opt/ml/model",
"overwrite_output_dir": True,
"max_steps": 500,
"save_steps": 5500,
}
distributed_hyperparameters = {**hyperparameters, "max_steps": 1000}
@property
def metric_definitions(self) -> str:
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": "train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": "eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": "eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": "train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": "loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": "sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def base_job_name(self) -> str:
return f"{self.framework}-transfromers-test"
@property
def test_path(self) -> str:
return f"./tests/sagemaker/scripts/{self.framework}"
@property
def image_uri(self) -> str:
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope="class")
def sm_env(request):
request.cls.env = SageMakerTestEnvironment(framework=request.cls.framework)