Skip to content
This repository was archived by the owner on Oct 31, 2023. It is now read-only.
This repository was archived by the owner on Oct 31, 2023. It is now read-only.

The detection accuracy of the R-50-FPN Faster R-CNN is lower than your report, confusing... #672

@chenjoya

Description

@chenjoya

❓ Questions and Help

Hi @fmassa , thanks for your elegant implementation.
But it is confusing that the detection AP is only 32.8 when I re-train R-50-FPN Faster R-CNN, which should be 36.8 in your report:https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/MODEL_ZOO.md

2019-04-14 07:12:12,977 maskrcnn_benchmark.inference INFO: Start evaluation on coco_2017_val dataset(5000 images).
2019-04-14 07:15:06,105 maskrcnn_benchmark.inference INFO: Total run time: 0:02:53.127008 (0.06925080318450928 s / img per device, on 2 devices)
2019-04-14 07:15:06,105 maskrcnn_benchmark.inference INFO: Model inference time: 0:02:32.530358 (0.061012143325805665 s / img per device, on 2 devices)
2019-04-14 07:15:07,906 maskrcnn_benchmark.inference INFO: Preparing results for COCO format
2019-04-14 07:15:07,906 maskrcnn_benchmark.inference INFO: Preparing bbox results
2019-04-14 07:15:09,584 maskrcnn_benchmark.inference INFO: Evaluating predictions
2019-04-14 07:16:17,912 maskrcnn_benchmark.inference INFO: OrderedDict([('bbox', OrderedDict([('AP', 0.3275950734831557), ('AP50', 0.5054028517973591), ('AP75', 0.36449119818971715), ('APs', 0.1492328236066365), ('APm', 0.3439931485309256), ('APl', 0.48224050452315087)]))])

The config is not changed, but I only have 2 V100 GPUS, therefore 8 images are on each device.
Other information:

OS: Ubuntu 18.04.1 LTS
GCC version: (GCC) 5.5.0
CMake version: version 3.10.2

Python version: 3.7
Is CUDA available: Yes
CUDA runtime version: 9.0.176
GPU models and configuration:
GPU 0: Tesla P100-PCIE-16GB
GPU 1: Tesla P100-PCIE-16GB
GPU 2: Tesla P100-PCIE-16GB
GPU 3: Tesla V100-PCIE-16GB
GPU 4: Tesla V100-PCIE-16GB

Nvidia driver version: 418.43
cuDNN version: Probably one of the following:
/usr/local/cuda-9.0/lib64/libcudnn.so.7.2.1
/usr/local/cuda-9.0/lib64/libcudnn_static.a
/usr/local/cuda-9.2/lib64/libcudnn.so.7.2.1
/usr/local/cuda-9.2/lib64/libcudnn_static.a

Versions of relevant libraries:
[pip] Could not collect
[conda] pytorch                   1.0.1           py3.7_cuda9.0.176_cudnn7.4.2_2    https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
[conda] torchvision               0.2.2                      py_3    https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
        Pillow (5.4.1)
2019-04-13 08:24:36,398 maskrcnn_benchmark INFO: Loaded configuration file configs/e2e_faster_rcnn_R_50_FPN_1x.yaml
2019-04-13 08:24:36,398 maskrcnn_benchmark INFO:

Thanks for your attention! ^^

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions