This repository was archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2.5k
This repository was archived by the owner on Oct 31, 2023. It is now read-only.
The detection accuracy of the R-50-FPN Faster R-CNN is lower than your report, confusing... #672
Copy link
Copy link
Closed
Description
❓ Questions and Help
Hi @fmassa , thanks for your elegant implementation.
But it is confusing that the detection AP is only 32.8 when I re-train R-50-FPN Faster R-CNN, which should be 36.8 in your report:https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/MODEL_ZOO.md
2019-04-14 07:12:12,977 maskrcnn_benchmark.inference INFO: Start evaluation on coco_2017_val dataset(5000 images).
2019-04-14 07:15:06,105 maskrcnn_benchmark.inference INFO: Total run time: 0:02:53.127008 (0.06925080318450928 s / img per device, on 2 devices)
2019-04-14 07:15:06,105 maskrcnn_benchmark.inference INFO: Model inference time: 0:02:32.530358 (0.061012143325805665 s / img per device, on 2 devices)
2019-04-14 07:15:07,906 maskrcnn_benchmark.inference INFO: Preparing results for COCO format
2019-04-14 07:15:07,906 maskrcnn_benchmark.inference INFO: Preparing bbox results
2019-04-14 07:15:09,584 maskrcnn_benchmark.inference INFO: Evaluating predictions
2019-04-14 07:16:17,912 maskrcnn_benchmark.inference INFO: OrderedDict([('bbox', OrderedDict([('AP', 0.3275950734831557), ('AP50', 0.5054028517973591), ('AP75', 0.36449119818971715), ('APs', 0.1492328236066365), ('APm', 0.3439931485309256), ('APl', 0.48224050452315087)]))])
The config is not changed, but I only have 2 V100 GPUS, therefore 8 images are on each device.
Other information:
OS: Ubuntu 18.04.1 LTS
GCC version: (GCC) 5.5.0
CMake version: version 3.10.2
Python version: 3.7
Is CUDA available: Yes
CUDA runtime version: 9.0.176
GPU models and configuration:
GPU 0: Tesla P100-PCIE-16GB
GPU 1: Tesla P100-PCIE-16GB
GPU 2: Tesla P100-PCIE-16GB
GPU 3: Tesla V100-PCIE-16GB
GPU 4: Tesla V100-PCIE-16GB
Nvidia driver version: 418.43
cuDNN version: Probably one of the following:
/usr/local/cuda-9.0/lib64/libcudnn.so.7.2.1
/usr/local/cuda-9.0/lib64/libcudnn_static.a
/usr/local/cuda-9.2/lib64/libcudnn.so.7.2.1
/usr/local/cuda-9.2/lib64/libcudnn_static.a
Versions of relevant libraries:
[pip] Could not collect
[conda] pytorch 1.0.1 py3.7_cuda9.0.176_cudnn7.4.2_2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
[conda] torchvision 0.2.2 py_3 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
Pillow (5.4.1)
2019-04-13 08:24:36,398 maskrcnn_benchmark INFO: Loaded configuration file configs/e2e_faster_rcnn_R_50_FPN_1x.yaml
2019-04-13 08:24:36,398 maskrcnn_benchmark INFO:
Thanks for your attention! ^^
Metadata
Metadata
Assignees
Labels
No labels