-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
cluster_kmeans.py
212 lines (191 loc) · 6.04 KB
/
cluster_kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
import os
import time
import numpy as np
from sklearn.cluster import MiniBatchKMeans
import joblib
from examples.textless_nlp.gslm.speech2unit.pretrained.utils import (
get_and_dump_features,
get_features,
)
def get_logger():
log_format = "[%(asctime)s] [%(levelname)s]: %(message)s"
logging.basicConfig(format=log_format, level=logging.INFO)
logger = logging.getLogger(__name__)
return logger
def get_parser():
parser = argparse.ArgumentParser(
description="Learn K-means clustering over acoustic features."
)
# Features arguments
parser.add_argument(
"--in_features_path", type=str, default=None, help="Features file path"
)
parser.add_argument(
"--feature_type",
type=str,
choices=["logmel", "hubert", "w2v2", "cpc"],
default=None,
help="Acoustic feature type",
)
parser.add_argument(
"--manifest_path",
type=str,
default=None,
help="Manifest file containing the root dir and file names",
)
parser.add_argument(
"--out_features_path",
type=str,
default=None,
help="Features file path to write to",
)
parser.add_argument(
"--checkpoint_path",
type=str,
help="Pretrained acoustic model checkpoint",
)
parser.add_argument(
"--layer",
type=int,
help="The layer of the pretrained model to extract features from",
default=-1,
)
parser.add_argument(
"--sample_pct",
type=float,
help="Percent data to use for K-means training",
default=0.1,
)
# K-means arguments
parser.add_argument(
"--num_clusters", type=int, help="Nubmer of clusters", default=50
)
parser.add_argument("--init", default="k-means++")
parser.add_argument(
"--max_iter",
type=int,
help="Maximum number of iterations for K-means training",
default=150,
)
parser.add_argument(
"--batch_size",
type=int,
help="Batch size for K-means training",
default=10000,
)
parser.add_argument("--tol", default=0.0, type=float)
parser.add_argument("--max_no_improvement", default=100, type=int)
parser.add_argument("--n_init", default=20, type=int)
parser.add_argument("--reassignment_ratio", default=0.5, type=float)
parser.add_argument(
"--out_kmeans_model_path",
type=str,
required=True,
help="Path to save K-means model",
)
# Leftovers
parser.add_argument(
"--seed",
type=int,
help="Random seed to use for K-means training",
default=1369,
)
return parser
def get_kmeans_model(
n_clusters,
init,
max_iter,
batch_size,
tol,
max_no_improvement,
n_init,
reassignment_ratio,
random_state,
):
return MiniBatchKMeans(
n_clusters=n_clusters,
init=init,
max_iter=max_iter,
batch_size=batch_size,
tol=tol,
max_no_improvement=max_no_improvement,
n_init=n_init,
reassignment_ratio=reassignment_ratio,
random_state=random_state,
verbose=1,
compute_labels=True,
init_size=None,
)
def train_kmeans(kmeans_model, features_batch):
start_time = time.time()
kmeans_model.fit(features_batch)
time_taken = round((time.time() - start_time) // 60, 2)
return kmeans_model, time_taken
def main(args, logger):
# Features loading/extraction for K-means
if args.in_features_path:
# Feature loading
logger.info(f"Loading features from {args.in_features_path}...")
features_batch = np.load(args.in_features_path, allow_pickle=True)
else:
# Feature extraction
logger.info(f"Extracting {args.feature_type} acoustic features...")
features_batch = (
get_features(
feature_type=args.feature_type,
checkpoint_path=args.checkpoint_path,
layer=args.layer,
manifest_path=args.manifest_path,
sample_pct=args.sample_pct,
flatten=True,
)
if not args.out_features_path
else get_and_dump_features(
feature_type=args.feature_type,
checkpoint_path=args.checkpoint_path,
layer=args.layer,
manifest_path=args.manifest_path,
sample_pct=args.sample_pct,
flatten=True,
out_features_path=args.out_features_path,
)
)
if args.out_features_path:
logger.info(
f"Saved extracted features at {args.out_features_path}"
)
logger.info(f"Features shape = {features_batch.shape}\n")
# Learn and save K-means model
kmeans_model = get_kmeans_model(
n_clusters=args.num_clusters,
init=args.init,
max_iter=args.max_iter,
batch_size=args.batch_size,
tol=args.tol,
max_no_improvement=args.max_no_improvement,
n_init=args.n_init,
reassignment_ratio=args.reassignment_ratio,
random_state=args.seed,
)
logger.info("Starting k-means training...")
kmeans_model, time_taken = train_kmeans(
kmeans_model=kmeans_model, features_batch=features_batch
)
logger.info(f"...done k-means training in {time_taken} minutes")
inertia = -kmeans_model.score(features_batch) / len(features_batch)
logger.info(f"Total intertia: {round(inertia, 2)}\n")
logger.info(f"Saving k-means model to {args.out_kmeans_model_path}")
os.makedirs(os.path.dirname(args.out_kmeans_model_path), exist_ok=True)
joblib.dump(kmeans_model, open(args.out_kmeans_model_path, "wb"))
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
logger = get_logger()
logger.info(args)
main(args, logger)