-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
345 lines (316 loc) · 16.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
#!/usr/bin/env python3
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import print_function
import argparse
import os
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms, models
from opacus.grad_sample.grad_sample_module import GradSampleModule
from opacus.accountants.analysis.rdp import compute_rdp, get_privacy_spent
from opacus.validators import ModuleValidator
from mechanisms import *
from mechanisms_pytorch import *
from utils import renyi_div_bound_lp, max_divergence_bound, fisher_information_bound, consolidate, params_to_vec, set_grad_to_vec
import sys
sys.path.append("Handcrafted-DP/")
from data import get_scatter_transform, get_scattered_loader
from models import ScatterLinear
from tqdm import trange
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(1, 16, 8, 2, padding=2)
self.conv2 = nn.Conv2d(16, 32, 4, 2, padding=0)
self.fc1 = nn.Linear(32 * 5 * 5, 32)
self.fc2 = nn.Linear(32, 10)
def forward(self, x):
x = x.view(-1, 1, 28, 28)
x = self.conv1(x)
x = torch.tanh(x)
x = F.avg_pool2d(x, 1)
x = self.conv2(x)
x = torch.tanh(x)
x = F.avg_pool2d(x, 1)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = torch.tanh(x)
x = self.fc2(x)
return x
def clip_gradient(args, grad_vec, p=2):
"""
L2 norm clip to args.norm_clip and then L-inf norm clip to args.linf_clip.
"""
C = args.norm_clip
grad_norm = grad_vec.norm(p, 1)
multiplier = grad_norm.new(grad_norm.size()).fill_(1)
multiplier[grad_norm.gt(C)] = C / grad_norm[grad_norm.gt(C)]
grad_vec *= multiplier.unsqueeze(1)
grad_vec.clamp_(-args.linf_clip, args.linf_clip)
return grad_vec
def add_noise(args, grad_vec, device, mechanism="gaussian"):
"""
Add noise and quantize the output if args.quantization > 0.
"""
batch_size = grad_vec.size(0)
d = grad_vec.size(1)
if mechanism == "laplace":
dist = torch.distributions.laplace.Laplace(0, 1)
grad_vec += dist.sample(grad_vec.size()).to(device) * args.norm_clip * args.scale
if args.quantization > 0:
assert args.quantization == 1, "Laplace mechanism with quantization level > 1 is not implemented yet."
grad_vec = grad_vec.sign()
elif mechanism == "gaussian":
grad_vec += torch.randn_like(grad_vec).to(device) * args.norm_clip * args.scale
if args.quantization > 0:
assert args.quantization == 1, "Gaussian mechanism with quantization level > 1 is not implemented yet."
grad_vec = grad_vec.sign()
elif isinstance(mechanism, SkellamMechanismPyTorch):
grad_vec = mechanism.decode(mechanism.privatize(mechanism.scale * grad_vec))
elif isinstance(mechanism, MVUMechanismPyTorch) or isinstance(mechanism, IMVUMechanismPyTorch):
M = args.linf_clip
# scale input to [0,1]
normalized_grad_vec = ((mechanism.scale * grad_vec + M) / (2 * M)).clamp(0, 1)
privatized_grad_vec = mechanism.decode(mechanism.privatize(normalized_grad_vec))
# scale input back to [-M, M]
grad_vec = privatized_grad_vec.float().view(batch_size, -1) * 2 * M - M
grad_vec /= mechanism.scale
else:
raise NotImplementedError(mechanism)
return grad_vec.sum(0)
def train(args, model, device, train_loader, optimizer, epoch, mechanism="gaussian"):
num_param = sum([np.prod(layer.size()) for layer in model.parameters()])
model.train()
p = 1 if args.mechanism == "laplace" or args.mechanism == "mvu_l1" else 2
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
num_batches = int(math.ceil(float(data.size(0)) / args.physical_batch_size))
grad_sum = torch.zeros(num_param).to(device)
for i in range(num_batches):
model.zero_grad()
lower = i * args.physical_batch_size
upper = min((i+1) * args.physical_batch_size, data.size(0))
x, y = data[lower:upper], target[lower:upper]
output = model(x)
loss = F.cross_entropy(output, y)
loss.backward()
grad_vec = params_to_vec(model, return_type="grad_sample")
d = grad_vec.size(1)
if args.norm_clip > 0:
grad_vec = clip_gradient(args, grad_vec, p)
grad_sum += add_noise(args, grad_vec, device, mechanism)
else:
grad_sum += grad_vec.sum(0)
grad_mean = grad_sum / data.size(0)
set_grad_to_vec(model, grad_mean)
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return float(correct) / len(test_loader.dataset)
def main():
parser = argparse.ArgumentParser(description='DP-SGD MNIST and CIFAR10 training')
parser.add_argument('--save-dir', type=str, default='dpsgd_results',
help='save directory')
parser.add_argument('--batch-size', type=int, default=600,
help='(virtual) input batch size for training')
parser.add_argument('--physical-batch-size', type=int, default=0,
help='actual batch size')
parser.add_argument('--test-batch-size', type=int, default=1000,
help='input batch size for testing')
parser.add_argument('--dataset', type=str, default='mnist', choices=["mnist", "fmnist", "kmnist", "cifar10"],
help='which dataset to train on')
parser.add_argument('--model', type=str, choices=['linear', 'convnet'], default='convnet',
help='which model to use')
parser.add_argument('--epochs', type=int, default=50,
help='number of epochs to train')
parser.add_argument('--lr', type=float, default=0.1,
help='learning rate')
parser.add_argument('--momentum', type=float, default=0.5,
help='momentum')
parser.add_argument('--norm-clip', type=float, default=0,
help='gradient norm clip')
parser.add_argument('--beta', type=float, default=1,
help='beta scaling for MVU; must be >0')
parser.add_argument('--mechanism', type=str, default='gaussian',
choices=["laplace", "gaussian", "mvu", "mvu_l1", "mvu_l2", "skellam"],
help='which mechanism to use')
parser.add_argument('--quantization', type=int, default=0,
help='quantization level for linf clipping')
parser.add_argument('--input-bits', type=int, default=1,
help='number of input bits for MVU mechanism')
parser.add_argument('--epsilon', type=float, default=1,
help='DP epsilon for MVU mechanism')
parser.add_argument('--scale', type=float, default=0,
help='Laplace/Gaussian noise multiplier')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--log-interval', type=int, default=20,
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='for saving the current model')
args = parser.parse_args()
os.makedirs(args.save_dir, exist_ok=True)
use_cuda = not args.no_cuda and torch.cuda.is_available()
args.linf_clip = args.norm_clip / args.beta
if args.physical_batch_size == 0:
args.physical_batch_size = args.batch_size
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'batch_size': args.batch_size}
if use_cuda:
kwargs.update({'num_workers': 1,
'pin_memory': True,
'shuffle': True},
)
if args.mechanism.startswith("mvu"):
output_file = "%s/%s_%s_epochs_%d_lr_%.2e_clip_%.2e_beta_%.2e_%s_bin_%d_quant_%d_eps_%.2e.pth" % (
args.save_dir, args.dataset, args.model, args.epochs, args.lr, args.norm_clip, args.beta,
args.mechanism, args.input_bits, args.quantization, args.epsilon
)
else:
output_file = "%s/%s_%s_epochs_%d_lr_%.2e_clip_%.2e_beta_%.2e_%s_quant_%d_scale_%.2e.pth" % (
args.save_dir, args.dataset, args.model, args.epochs, args.lr, args.norm_clip, args.beta,
args.mechanism, args.quantization, args.scale
)
### DATA LOADING ###
transform = transforms.ToTensor()
if args.dataset == 'mnist':
train_set = datasets.MNIST('./data', train=True, download=True, transform=transform)
test_set = datasets.MNIST('./data', train=False, transform=transform)
elif args.dataset == 'fmnist':
train_set = datasets.FashionMNIST('./data', train=True, download=True, transform=transform)
test_set = datasets.FashionMNIST('./data', train=False, transform=transform)
elif args.dataset == 'kmnist':
train_set = datasets.KMNIST('./data', train=True, download=True, transform=transform)
test_set = datasets.KMNIST('./data', train=False, transform=transform)
else:
transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_set = datasets.CIFAR10(
root='../data', train=True, download=True, transform=transform)
test_set = datasets.CIFAR10(
root='../data', train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True, num_workers=1, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
test_set, batch_size=args.batch_size, shuffle=False, num_workers=1, pin_memory=True)
### MODEL LOADING ###
if args.model == "linear":
scattering, K, (h, w) = get_scatter_transform("cifar10" if args.dataset == "cifar10" else "mnist")
scattering.to(device)
train_loader = get_scattered_loader(train_loader, scattering, device, drop_last=True, sample_batches=False)
test_loader = get_scattered_loader(test_loader, scattering, device)
model = GradSampleModule(ScatterLinear(K, (h, w), input_norm="GroupNorm", num_groups=27).to(device))
else:
assert args.dataset != "cifar10", "CIFAR-10 ConvNet training is not supported."
model = GradSampleModule(ConvNet().to(device))
num_param = sum([np.prod(layer.size()) for layer in model.parameters()])
print("Number of model parameters = %d" % num_param)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
### MECHANISM LOADING ###
if args.mechanism.startswith("mvu") and args.norm_clip > 0 and args.linf_clip > 0:
savefile = os.path.join('sweep_eps_budget_penalized_lam1.0e+02', f"mechanism_bin{args.input_bits}_bout{args.quantization}_metric-l1_eps{args.epsilon:.2f}.pkl")
with open(savefile, "rb") as file:
mechanism_numpy = pickle.load(file)
mechanism_numpy.P /= mechanism_numpy.P.sum(1)[:, None]
norm_bound = args.norm_clip / (2 * args.linf_clip) # L2 sensitivity for leave-one-out adjacency
if args.mechanism == "mvu":
mechanism = MVUMechanismPyTorch(
args.input_bits, args.quantization, args.epsilon, torch.from_numpy(mechanism_numpy.P),
torch.from_numpy(mechanism_numpy.alpha), norm_bound, device)
mechanism.scale = 0.9
print("Computing Renyi divergence bounds using LP relaxation")
renyi_div_bounds = renyi_div_bound_lp(orders, num_param, mechanism_numpy.P, norm_bound, greedy=True)
elif args.mechanism == "mvu_l1":
mechanism = IMVUMechanismPyTorch(
args.input_bits, args.quantization, torch.from_numpy(mechanism_numpy.P),
torch.from_numpy(mechanism_numpy.alpha), device)
log_P = np.log(mechanism_numpy.P)
epsilon_bound = args.epsilon + max_divergence_bound(log_P)
print("Max divergence bound = %.4f" % epsilon_bound)
else:
assert args.input_bits == 1, "Interpolated MVU is not defined for b_in > 1"
mechanism_numpy.P[1, :] = np.flip(mechanism_numpy.P[0, :], (0,))
mechanism = IMVUMechanismPyTorch(
args.input_bits, args.quantization, torch.from_numpy(mechanism_numpy.P),
torch.from_numpy(mechanism_numpy.alpha), device)
P, _ = consolidate(mechanism_numpy)
fisher_info_bound = fisher_information_bound(P[0, :])
print("Fisher info bound = %.4f" % fisher_info_bound)
elif args.mechanism == "skellam":
mu = (args.scale * args.norm_clip)**2
mechanism = SkellamMechanismPyTorch(args.quantization, num_param, args.norm_clip, mu, device)
else:
mechanism = args.mechanism
q = args.batch_size / float(len(train_set))
orders = np.array(list(np.linspace(1.1, 10.9, 99)) + list(range(11, 64)))
test_accs, epsilons = torch.zeros(args.epochs), torch.zeros(args.epochs)
for epoch in range(1, args.epochs + 1):
### TRAINING ###
train(args, model, device, train_loader, optimizer, epoch, mechanism)
test_accs[epoch-1] = test(model, device, test_loader)
### PRIVACY ACCOUNTING ###
delta = 1e-5
if args.mechanism == "laplace" and args.scale > 0 and args.norm_clip > 0:
delta = 0
opt_order = 0
epsilon = epoch / args.scale
elif args.mechanism == "gaussian" and args.scale > 0 and args.norm_clip > 0:
rdp_const = epoch * orders / (2 * args.scale ** 2)
epsilon, opt_order = get_privacy_spent(orders=orders, rdp=rdp_const, delta=delta)
elif args.mechanism == "mvu" and args.norm_clip > 0:
rdp_const = renyi_div_bounds * epoch
epsilon, opt_order = get_privacy_spent(orders=orders, rdp=rdp_const, delta=delta)
elif args.mechanism == "mvu_l1" and args.norm_clip > 0:
delta = 0
opt_order = 0
epsilon = epoch * epsilon_bound * norm_bound
elif args.mechanism == "mvu_l2" and args.norm_clip > 0:
rdp_const = epoch * orders * fisher_info_bound * norm_bound**2 / 2
epsilon, opt_order = get_privacy_spent(orders=orders, rdp=rdp_const, delta=delta)
elif args.mechanism == "skellam" and args.norm_clip > 0:
rdp_const = epoch * mechanism.renyi_div(orders)
epsilon, opt_order = get_privacy_spent(orders=orders, rdp=rdp_const, delta=delta)
else:
epsilon, opt_order = math.inf, 0
epsilons[epoch-1] = epsilon
print("Epsilon at delta=%.2e: %.4f, optimal alpha: %.4f\n" % (delta, epsilon, opt_order))
if args.save_model:
if os.path.exists(output_file):
checkpoint = torch.load(output_file)
checkpoint['state_dict'].append(model.state_dict())
checkpoint['test_accs'].append(test_accs)
checkpoint['epsilons'].append(epsilons)
torch.save(checkpoint, output_file)
else:
torch.save({'state_dict': [model.state_dict()], 'test_accs': [test_accs], 'epsilons': [epsilons]}, output_file)
if __name__ == '__main__':
main()