This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 324
/
main.py
327 lines (279 loc) · 12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import os
import pickle
import time
import faiss
import numpy as np
from sklearn.metrics.cluster import normalized_mutual_info_score
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import clustering
import models
from util import AverageMeter, Logger, UnifLabelSampler
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch Implementation of DeepCluster')
parser.add_argument('data', metavar='DIR', help='path to dataset')
parser.add_argument('--arch', '-a', type=str, metavar='ARCH',
choices=['alexnet', 'vgg16'], default='alexnet',
help='CNN architecture (default: alexnet)')
parser.add_argument('--sobel', action='store_true', help='Sobel filtering')
parser.add_argument('--clustering', type=str, choices=['Kmeans', 'PIC'],
default='Kmeans', help='clustering algorithm (default: Kmeans)')
parser.add_argument('--nmb_cluster', '--k', type=int, default=10000,
help='number of cluster for k-means (default: 10000)')
parser.add_argument('--lr', default=0.05, type=float,
help='learning rate (default: 0.05)')
parser.add_argument('--wd', default=-5, type=float,
help='weight decay pow (default: -5)')
parser.add_argument('--reassign', type=float, default=1.,
help="""how many epochs of training between two consecutive
reassignments of clusters (default: 1)""")
parser.add_argument('--workers', default=4, type=int,
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', type=int, default=200,
help='number of total epochs to run (default: 200)')
parser.add_argument('--start_epoch', default=0, type=int,
help='manual epoch number (useful on restarts) (default: 0)')
parser.add_argument('--batch', default=256, type=int,
help='mini-batch size (default: 256)')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum (default: 0.9)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to checkpoint (default: None)')
parser.add_argument('--checkpoints', type=int, default=25000,
help='how many iterations between two checkpoints (default: 25000)')
parser.add_argument('--seed', type=int, default=31, help='random seed (default: 31)')
parser.add_argument('--exp', type=str, default='', help='path to exp folder')
parser.add_argument('--verbose', action='store_true', help='chatty')
return parser.parse_args()
def main(args):
# fix random seeds
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
# CNN
if args.verbose:
print('Architecture: {}'.format(args.arch))
model = models.__dict__[args.arch](sobel=args.sobel)
fd = int(model.top_layer.weight.size()[1])
model.top_layer = None
model.features = torch.nn.DataParallel(model.features)
model.cuda()
cudnn.benchmark = True
# create optimizer
optimizer = torch.optim.SGD(
filter(lambda x: x.requires_grad, model.parameters()),
lr=args.lr,
momentum=args.momentum,
weight_decay=10**args.wd,
)
# define loss function
criterion = nn.CrossEntropyLoss().cuda()
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
# remove top_layer parameters from checkpoint
for key in checkpoint['state_dict']:
if 'top_layer' in key:
del checkpoint['state_dict'][key]
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# creating checkpoint repo
exp_check = os.path.join(args.exp, 'checkpoints')
if not os.path.isdir(exp_check):
os.makedirs(exp_check)
# creating cluster assignments log
cluster_log = Logger(os.path.join(args.exp, 'clusters'))
# preprocessing of data
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
tra = [transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize]
# load the data
end = time.time()
dataset = datasets.ImageFolder(args.data, transform=transforms.Compose(tra))
if args.verbose:
print('Load dataset: {0:.2f} s'.format(time.time() - end))
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=args.batch,
num_workers=args.workers,
pin_memory=True)
# clustering algorithm to use
deepcluster = clustering.__dict__[args.clustering](args.nmb_cluster)
# training convnet with DeepCluster
for epoch in range(args.start_epoch, args.epochs):
end = time.time()
# remove head
model.top_layer = None
model.classifier = nn.Sequential(*list(model.classifier.children())[:-1])
# get the features for the whole dataset
features = compute_features(dataloader, model, len(dataset))
# cluster the features
if args.verbose:
print('Cluster the features')
clustering_loss = deepcluster.cluster(features, verbose=args.verbose)
# assign pseudo-labels
if args.verbose:
print('Assign pseudo labels')
train_dataset = clustering.cluster_assign(deepcluster.images_lists,
dataset.imgs)
# uniformly sample per target
sampler = UnifLabelSampler(int(args.reassign * len(train_dataset)),
deepcluster.images_lists)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch,
num_workers=args.workers,
sampler=sampler,
pin_memory=True,
)
# set last fully connected layer
mlp = list(model.classifier.children())
mlp.append(nn.ReLU(inplace=True).cuda())
model.classifier = nn.Sequential(*mlp)
model.top_layer = nn.Linear(fd, len(deepcluster.images_lists))
model.top_layer.weight.data.normal_(0, 0.01)
model.top_layer.bias.data.zero_()
model.top_layer.cuda()
# train network with clusters as pseudo-labels
end = time.time()
loss = train(train_dataloader, model, criterion, optimizer, epoch)
# print log
if args.verbose:
print('###### Epoch [{0}] ###### \n'
'Time: {1:.3f} s\n'
'Clustering loss: {2:.3f} \n'
'ConvNet loss: {3:.3f}'
.format(epoch, time.time() - end, clustering_loss, loss))
try:
nmi = normalized_mutual_info_score(
clustering.arrange_clustering(deepcluster.images_lists),
clustering.arrange_clustering(cluster_log.data[-1])
)
print('NMI against previous assignment: {0:.3f}'.format(nmi))
except IndexError:
pass
print('####################### \n')
# save running checkpoint
torch.save({'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict()},
os.path.join(args.exp, 'checkpoint.pth.tar'))
# save cluster assignments
cluster_log.log(deepcluster.images_lists)
def train(loader, model, crit, opt, epoch):
"""Training of the CNN.
Args:
loader (torch.utils.data.DataLoader): Data loader
model (nn.Module): CNN
crit (torch.nn): loss
opt (torch.optim.SGD): optimizer for every parameters with True
requires_grad in model except top layer
epoch (int)
"""
batch_time = AverageMeter()
losses = AverageMeter()
data_time = AverageMeter()
forward_time = AverageMeter()
backward_time = AverageMeter()
# switch to train mode
model.train()
# create an optimizer for the last fc layer
optimizer_tl = torch.optim.SGD(
model.top_layer.parameters(),
lr=args.lr,
weight_decay=10**args.wd,
)
end = time.time()
for i, (input_tensor, target) in enumerate(loader):
data_time.update(time.time() - end)
# save checkpoint
n = len(loader) * epoch + i
if n % args.checkpoints == 0:
path = os.path.join(
args.exp,
'checkpoints',
'checkpoint_' + str(n / args.checkpoints) + '.pth.tar',
)
if args.verbose:
print('Save checkpoint at: {0}'.format(path))
torch.save({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer' : opt.state_dict()
}, path)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input_tensor.cuda())
target_var = torch.autograd.Variable(target)
output = model(input_var)
loss = crit(output, target_var)
# record loss
losses.update(loss.data[0], input_tensor.size(0))
# compute gradient and do SGD step
opt.zero_grad()
optimizer_tl.zero_grad()
loss.backward()
opt.step()
optimizer_tl.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.verbose and (i % 200) == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data: {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss: {loss.val:.4f} ({loss.avg:.4f})'
.format(epoch, i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses))
return losses.avg
def compute_features(dataloader, model, N):
if args.verbose:
print('Compute features')
batch_time = AverageMeter()
end = time.time()
model.eval()
# discard the label information in the dataloader
for i, (input_tensor, _) in enumerate(dataloader):
input_var = torch.autograd.Variable(input_tensor.cuda(), volatile=True)
aux = model(input_var).data.cpu().numpy()
if i == 0:
features = np.zeros((N, aux.shape[1]), dtype='float32')
aux = aux.astype('float32')
if i < len(dataloader) - 1:
features[i * args.batch: (i + 1) * args.batch] = aux
else:
# special treatment for final batch
features[i * args.batch:] = aux
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.verbose and (i % 200) == 0:
print('{0} / {1}\t'
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f})'
.format(i, len(dataloader), batch_time=batch_time))
return features
if __name__ == '__main__':
args = parse_args()
main(args)