-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain.py
245 lines (212 loc) · 9.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import sys
import os
import time
import timeit
import logging
from arguments import parser
import torch
import gym
import matplotlib as mpl
import matplotlib.pyplot as plt
from baselines.logger import HumanOutputFormat
display = None
if sys.platform.startswith('linux'):
print('Setting up virtual display')
import pyvirtualdisplay
display = pyvirtualdisplay.Display(visible=0, size=(1400, 900), color_depth=24)
display.start()
from envs.multigrid import *
from envs.multigrid.adversarial import *
from envs.box2d import *
from envs.bipedalwalker import *
from envs.runners.adversarial_runner import AdversarialRunner
from util import make_agent, FileWriter, safe_checkpoint, create_parallel_env, make_plr_args, save_images
from eval import Evaluator
if __name__ == '__main__':
os.environ["OMP_NUM_THREADS"] = "1"
args = parser.parse_args()
# === Configure logging ==
if args.xpid is None:
args.xpid = "lr-%s" % time.strftime("%Y%m%d-%H%M%S")
log_dir = os.path.expandvars(os.path.expanduser(args.log_dir))
filewriter = FileWriter(
xpid=args.xpid, xp_args=args.__dict__, rootdir=log_dir
)
screenshot_dir = os.path.join(log_dir, args.xpid, 'screenshots')
if not os.path.exists(screenshot_dir):
os.makedirs(screenshot_dir, exist_ok=True)
def log_stats(stats):
filewriter.log(stats)
if args.verbose:
HumanOutputFormat(sys.stdout).writekvs(stats)
if args.verbose:
logging.getLogger().setLevel(logging.INFO)
else:
logging.disable(logging.CRITICAL)
# === Determine device ====
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda:0" if args.cuda else "cpu")
if 'cuda' in device.type:
torch.backends.cudnn.benchmark = True
print('Using CUDA\n')
# === Create parallel envs ===
venv, ued_venv = create_parallel_env(args)
is_training_env = args.ued_algo in ['paired', 'flexible_paired', 'minimax']
is_paired = args.ued_algo in ['paired', 'flexible_paired']
agent = make_agent(name='agent', env=venv, args=args, device=device)
adversary_agent, adversary_env = None, None
if is_paired or args.use_accel_paired:
adversary_agent = make_agent(name='adversary_agent', env=venv, args=args, device=device)
if is_training_env:
adversary_env = make_agent(name='adversary_env', env=venv, args=args, device=device)
if args.ued_algo == 'domain_randomization' and args.use_plr and not args.use_reset_random_dr:
adversary_env = make_agent(name='adversary_env', env=venv, args=args, device=device)
adversary_env.random()
# === Create runner ===
plr_args = None
if args.use_plr:
plr_args = make_plr_args(args, venv.observation_space, venv.action_space)
train_runner = AdversarialRunner(
args=args,
venv=venv,
agent=agent,
ued_venv=ued_venv,
adversary_agent=adversary_agent,
adversary_env=adversary_env,
flexible_protagonist=False,
train=True,
plr_args=plr_args,
device=device)
# === Configure checkpointing ===
timer = timeit.default_timer
initial_update_count = 0
last_logged_update_at_restart = -1
checkpoint_path = os.path.expandvars(
os.path.expanduser("%s/%s/%s" % (log_dir, args.xpid, "model.tar"))
)
## This is only used for the first iteration of finetuning
if args.xpid_finetune:
model_fname = f'{args.model_finetune}.tar'
base_checkpoint_path = os.path.expandvars(
os.path.expanduser("%s/%s/%s" % (log_dir, args.xpid_finetune, model_fname))
)
def checkpoint(index=None):
if args.disable_checkpoint:
return
safe_checkpoint({'runner_state_dict': train_runner.state_dict()},
checkpoint_path,
index=index,
archive_interval=args.archive_interval)
logging.info("Saved checkpoint to %s", checkpoint_path)
# === Load checkpoint ===
if args.checkpoint and os.path.exists(checkpoint_path):
checkpoint_states = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
last_logged_update_at_restart = filewriter.latest_tick() # ticks are 0-indexed updates
train_runner.load_state_dict(checkpoint_states['runner_state_dict'])
initial_update_count = train_runner.num_updates
logging.info(f"Resuming preempted job after {initial_update_count} updates\n") # 0-indexed next update
elif args.xpid_finetune and not os.path.exists(checkpoint_path):
checkpoint_states = torch.load(base_checkpoint_path)
state_dict = checkpoint_states['runner_state_dict']
agent_state_dict = state_dict.get('agent_state_dict')
optimizer_state_dict = state_dict.get('optimizer_state_dict')
train_runner.agents['agent'].algo.actor_critic.load_state_dict(agent_state_dict['agent'])
train_runner.agents['agent'].algo.optimizer.load_state_dict(optimizer_state_dict['agent'])
# === Set up Evaluator ===
evaluator = None
if args.test_env_names:
evaluator = Evaluator(
args.test_env_names.split(','),
num_processes=args.test_num_processes,
num_episodes=args.test_num_episodes,
frame_stack=args.frame_stack,
grayscale=args.grayscale,
num_action_repeat=args.num_action_repeat,
use_global_critic=args.use_global_critic,
use_global_policy=args.use_global_policy,
device=device)
# === Train ===
last_checkpoint_idx = getattr(train_runner, args.checkpoint_basis)
update_start_time = timer()
num_updates = int(args.num_env_steps) // args.num_steps // args.num_processes
for j in range(initial_update_count, num_updates):
stats = train_runner.run()
# === Perform logging ===
if train_runner.num_updates <= last_logged_update_at_restart:
continue
log = (j % args.log_interval == 0) or j == num_updates - 1
save_screenshot = \
args.screenshot_interval > 0 and \
(j % args.screenshot_interval == 0)
if log:
# Eval
test_stats = {}
if evaluator is not None and (j % args.test_interval == 0 or j == num_updates - 1):
test_stats = evaluator.evaluate(train_runner.agents['agent'])
stats.update(test_stats)
if args.use_accel_paired:
adv_test_stats = evaluator.evaluate(train_runner.agents['adversary_agent'])
curr_keys = list(adv_test_stats.keys())
for curr_key in curr_keys:
adv_test_stats[f"advagent_{curr_key}"] = adv_test_stats[curr_key]
adv_test_stats.pop(curr_key, None)
stats.update(adv_test_stats)
else:
stats.update({k:None for k in evaluator.get_stats_keys()})
update_end_time = timer()
num_incremental_updates = 1 if j == 0 else args.log_interval
sps = num_incremental_updates*(args.num_processes * args.num_steps) / (update_end_time - update_start_time)
update_start_time = update_end_time
stats.update({'sps': sps})
stats.update(test_stats) # Ensures sps column is always before test stats
log_stats(stats)
checkpoint_idx = getattr(train_runner, args.checkpoint_basis)
if checkpoint_idx != last_checkpoint_idx:
is_last_update = j == num_updates - 1
if is_last_update or \
(train_runner.num_updates > 0 and checkpoint_idx % args.checkpoint_interval == 0):
checkpoint(checkpoint_idx)
logging.info(f"\nSaved checkpoint after update {j}")
logging.info(f"\nLast update: {is_last_update}")
elif train_runner.num_updates > 0 and args.archive_interval > 0 \
and checkpoint_idx % args.archive_interval == 0:
checkpoint(checkpoint_idx)
logging.info(f"\nArchived checkpoint after update {j}")
if save_screenshot:
level_info = train_runner.sampled_level_info
if args.env_name.startswith('BipedalWalker'):
encodings = venv.get_level()
df = bipedalwalker_df_from_encodings(args.env_name, encodings)
if args.use_editor and level_info:
df.to_csv(os.path.join(
screenshot_dir,
f"update{j}-replay{level_info['level_replay']}-n_edits{level_info['num_edits'][0]}.csv"))
else:
df.to_csv(os.path.join(
screenshot_dir,
f'update{j}.csv'))
else:
venv.reset_agent()
images = venv.get_images()
if args.use_editor and level_info:
save_images(
images[:args.screenshot_batch_size],
os.path.join(
screenshot_dir,
f"update{j}-replay{level_info['level_replay']}-n_edits{level_info['num_edits'][0]}.png"),
normalize=True, channels_first=False)
else:
save_images(
images[:args.screenshot_batch_size],
os.path.join(screenshot_dir, f'update{j}.png'),
normalize=True, channels_first=False)
plt.close()
evaluator.close()
venv.close()
if display:
display.stop()