This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 498
/
prepare-xnli.sh
executable file
·75 lines (62 loc) · 2.6 KB
/
prepare-xnli.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copyright (c) 2019-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
#
# This script is meant to prepare data to reproduce XNLI experiments
# Just modify the "code" and "vocab" path for your own model
#
set -e
pair=$1 # input language pair
# data paths
MAIN_PATH=$PWD
PARA_PATH=$PWD/data/para
TOOLS_PATH=$PWD/tools
WIKI_PATH=$PWD/data/wiki
XNLI_PATH=$PWD/data/xnli/XNLI-1.0
PROCESSED_PATH=$PWD/data/processed/XLM15
CODES_PATH=$MAIN_PATH/codes_xnli_15
VOCAB_PATH=$MAIN_PATH/vocab_xnli_15
FASTBPE=$TOOLS_PATH/fastBPE/fast
# Get BPE codes and vocab
wget -c https://dl.fbaipublicfiles.com/XLM/codes_xnli_15 -P $MAIN_PATH
wget -c https://dl.fbaipublicfiles.com/XLM/vocab_xnli_15 -P $MAIN_PATH
## Prepare monolingual data
# apply BPE codes and binarize the monolingual corpora
for lg in ar bg de el en es fr hi ru sw th tr ur vi zh; do
for split in train valid test; do
$FASTBPE applybpe $PROCESSED_PATH/$lg.$split $WIKI_PATH/txt/$lg.$split $CODES_PATH
python preprocess.py $VOCAB_PATH $PROCESSED_PATH/$lg.$split
done
done
## Prepare parallel data
# apply BPE codes and binarize the parallel corpora
for pair in ar-en bg-en de-en el-en en-es en-fr en-hi en-ru en-sw en-th en-tr en-ur en-vi en-zh; do
for lg in $(echo $pair | sed -e 's/\-/ /g'); do
for split in train valid test; do
$FASTBPE applybpe $PROCESSED_PATH/$pair.$lg.$split $PARA_PATH/$pair.$lg.$split $CODES_PATH
python preprocess.py $VOCAB_PATH $PROCESSED_PATH/$pair.$lg.$split
done
done
done
## Prepare XNLI data
rm -rf $PROCESSED_PATH/eval/XNLI
mkdir -p $PROCESSED_PATH/eval/XNLI
# apply BPE codes and binarize the XNLI corpora
for lg in ar bg de el en es fr hi ru sw th tr ur vi zh; do
for splt in train valid test; do
if [ "$splt" = "train" ] && [ "$lg" != "en" ]; then
continue
fi
sed '1d' $XNLI_PATH/${lg}.${splt} | cut -f1 > $PROCESSED_PATH/eval/XNLI/f1.tok
sed '1d' $XNLI_PATH/${lg}.${splt} | cut -f2 > $PROCESSED_PATH/eval/XNLI/f2.tok
sed '1d' $XNLI_PATH/${lg}.${splt} | cut -f3 > $PROCESSED_PATH/eval/XNLI/${splt}.label.${lg}
$FASTBPE applybpe $PROCESSED_PATH/eval/XNLI/${splt}.s1.${lg} $PROCESSED_PATH/eval/XNLI/f1.tok ${CODES_PATH}
$FASTBPE applybpe $PROCESSED_PATH/eval/XNLI/${splt}.s2.${lg} $PROCESSED_PATH/eval/XNLI/f2.tok ${CODES_PATH}
python preprocess.py ${VOCAB_PATH} $PROCESSED_PATH/eval/XNLI/${splt}.s1.${lg}
python preprocess.py ${VOCAB_PATH} $PROCESSED_PATH/eval/XNLI/${splt}.s2.${lg}
rm $PROCESSED_PATH/eval/XNLI/*.tok*
done
done