-
Notifications
You must be signed in to change notification settings - Fork 463
/
xsim.py
165 lines (144 loc) · 5.01 KB
/
xsim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
# Tool to calculate multilingual similarity error rate (xSIM)
import faiss
import numpy as np
import typing as tp
import os
import json
from enum import Enum
class Margin(Enum):
RATIO = "ratio"
DISTANCE = "distance"
ABSOLUTE = "absolute"
@classmethod
def has_value(cls, value):
return value in cls._value2member_map_
def xSIM(
x: tp.Union[str, np.ndarray],
y: tp.Union[str, np.ndarray],
margin: str = Margin.RATIO.value,
k: int = 4,
dim: int = 1024,
fp16: bool = False,
eval_text: str = None,
augmented_json: str = None,
) -> tp.Tuple[int, int, tp.Dict[str, int]]:
assert Margin.has_value(margin), f"Margin type: {margin}, is not supported."
if not isinstance(x, np.ndarray):
x = _load_embeddings(x, dim, fp16)
if not isinstance(y, np.ndarray):
y = _load_embeddings(y, dim, fp16)
# calculate xSIM error
return calculate_error(x, y, margin, k, eval_text, augmented_json)
def _load_embeddings(infile: str, dim: int, fp16: bool = False) -> np.ndarray:
assert os.path.isfile(infile), f"file: {infile} does not exist."
emb = np.fromfile(infile, dtype=np.float16 if fp16 else np.float32)
num_examples = emb.shape[0] // dim
emb.resize(num_examples, dim)
if fp16:
emb = emb.astype(np.float32) # faiss currently only supports fp32
return emb
def score_margin(
Dxy: np.ndarray,
Ixy: np.ndarray,
Ax: np.ndarray,
Ay: np.ndarray,
margin: str,
k: int,
) -> np.ndarray:
nbex = Dxy.shape[0]
scores = np.zeros((nbex, k))
for i in range(nbex):
for j in range(k):
jj = Ixy[i, j]
a = Dxy[i, j]
b = (Ax[i] + Ay[jj]) / 2
if margin == Margin.RATIO.value:
scores[i, j] = a / b
else: # distance margin
scores[i, j] = a - b
return scores
def _score_knn(x: np.ndarray, y: np.ndarray, k: int, margin: str) -> np.ndarray:
nbex, dim = x.shape
# create index
idx_x = faiss.IndexFlatIP(dim)
idx_y = faiss.IndexFlatIP(dim)
# L2 normalization needed for cosine distance
faiss.normalize_L2(x)
faiss.normalize_L2(y)
idx_x.add(x)
idx_y.add(y)
if margin == Margin.ABSOLUTE.value:
scores, indices = idx_y.search(x, 1)
else:
# return cosine similarity and indices of k closest neighbors
Cos_xy, Idx_xy = idx_y.search(x, k)
Cos_yx, Idx_yx = idx_x.search(y, k)
# average cosines
Avg_xy = Cos_xy.mean(axis=1)
Avg_yx = Cos_yx.mean(axis=1)
scores = score_margin(Cos_xy, Idx_xy, Avg_xy, Avg_yx, margin, k)
# find best
best = scores.argmax(axis=1)
indices = np.zeros((nbex, 1), dtype=np.int32)
for i in range(nbex):
indices[i] = Idx_xy[i, best[i]]
return indices
def get_transform(augmented_json, closest_neighbor, src):
if (
closest_neighbor in augmented_json
and augmented_json[closest_neighbor]["src"] == src
):
return augmented_json[closest_neighbor]["errtype"]
return "Misaligned"
def calculate_error(
x: np.ndarray,
y: np.ndarray,
margin: str = None,
k: int = 4,
eval_text: str = None,
augmented_json: str = None,
) -> tp.Tuple[int, int, tp.Dict[str, int]]:
if augmented_json:
with open(augmented_json) as f:
augmented_json = json.load(f)
assert (
x.shape[0] < y.shape[0]
), f"Shape mismatch: {x.shape[0]} >= target {y.shape[0]}"
else:
assert (
x.shape == y.shape
), f"number of source {x.shape} / target {y.shape} shapes mismatch, "
nbex = x.shape[0]
augmented_report = {}
# for each x calculate the highest scoring neighbor from y
closest_neighbor = _score_knn(x, y, k, margin)
if eval_text: # calc textual error
lines = open(eval_text, encoding="utf-8", errors="surrogateescape").readlines()
err = 0
for ex in range(nbex):
if lines[ex] != lines[closest_neighbor[ex, 0]]:
err += 1
if augmented_json:
transform = get_transform(
augmented_json,
lines[closest_neighbor[ex, 0]].strip(),
lines[ex].strip(),
)
augmented_report[transform] = augmented_report.get(transform, 0) + 1
else: # calc index error
ref = np.linspace(0, nbex - 1, nbex).astype(int) # [0, nbex)
err = nbex - np.equal(closest_neighbor.reshape(nbex), ref).astype(int).sum()
return err, nbex, augmented_report