Skip to content

facebookexperimental/free-threading-benchmarking

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Faster CPython Benchmark Infrastructure

πŸ”’ ▢️ START A BENCHMARK RUN

Results

Here are some recent and important revisions. πŸ‘‰ Complete list of results.

Most recent pystats on main (22a4421)

linux x86_64 (linux)

date fork/ref hash/flags vs. 3.12.6: vs. 3.13.0rc2: vs. base:
2025-01-23 python/327a257e6ae4ad0e3b6e 327a257 1.060x ↑
πŸ“„πŸ“ˆ
1.018x ↑
πŸ“„πŸ“ˆ
2025-01-23 python/327a257e6ae4ad0e3b6e 327a257 (NOGIL) 1.088x ↓
πŸ“„πŸ“ˆ
1.122x ↓
πŸ“„πŸ“ˆ
1.134x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-22 python/86c1a60d5a28cfb51f88 86c1a60 1.049x ↑
πŸ“„πŸ“ˆ
1.010x ↑
πŸ“„πŸ“ˆ
2025-01-22 python/86c1a60d5a28cfb51f88 86c1a60 (NOGIL) 1.087x ↓
πŸ“„πŸ“ˆ
1.117x ↓
πŸ“„πŸ“ˆ
1.120x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-21 python/01bcf13a1c5bfca5124c 01bcf13 (NOGIL) 1.097x ↓
πŸ“„πŸ“ˆ
1.132x ↓
πŸ“„πŸ“ˆ
1.128x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-21 python/01bcf13a1c5bfca5124c 01bcf13 1.048x ↑
πŸ“„πŸ“ˆ
1.005x ↑
πŸ“„πŸ“ˆ
2025-01-20 python/e65a1eb93ae35f9fbab1 e65a1eb (NOGIL) 1.077x ↓
πŸ“„πŸ“ˆ
1.109x ↓
πŸ“„πŸ“ˆ
1.128x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-20 python/e65a1eb93ae35f9fbab1 e65a1eb 1.068x ↑
πŸ“„πŸ“ˆ
1.025x ↑
πŸ“„πŸ“ˆ
2025-01-20 python/bca35f0e782848ae2acd bca35f0 1.072x ↑
πŸ“„πŸ“ˆ
1.029x ↑
πŸ“„πŸ“ˆ
2025-01-20 python/bca35f0e782848ae2acd bca35f0 (NOGIL) 1.073x ↓
πŸ“„πŸ“ˆ
1.107x ↓
πŸ“„πŸ“ˆ
1.127x ↓
πŸ“„πŸ“ˆπŸ§ 

linux x86_64 (vultr)

date fork/ref hash/flags vs. 3.12.6: vs. 3.13.0rc2: vs. base:
2025-01-23 python/327a257e6ae4ad0e3b6e 327a257 1.085x ↑
πŸ“„πŸ“ˆ
1.046x ↑
πŸ“„πŸ“ˆ
2025-01-23 python/327a257e6ae4ad0e3b6e 327a257 (NOGIL) 1.087x ↓
πŸ“„πŸ“ˆ
1.117x ↓
πŸ“„πŸ“ˆ
1.159x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-22 nascheme/gh_129201_gc_mark_pr 1b4e8c3 (NOGIL) 1.071x ↓
πŸ“„πŸ“ˆ
1.102x ↓
πŸ“„πŸ“ˆ
1.009x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-22 python/2ed5ee9a50454b3fce87 2ed5ee9 (NOGIL) 1.079x ↓
πŸ“„πŸ“ˆ
1.109x ↓
πŸ“„πŸ“ˆ
1.151x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-22 python/2ed5ee9a50454b3fce87 2ed5ee9 1.084x ↑
πŸ“„πŸ“ˆ
1.047x ↑
πŸ“„πŸ“ˆ
2025-01-22 mpage/ft_aa_test_1 dc449a1 (NOGIL) 1.079x ↓
πŸ“„πŸ“ˆ
1.109x ↓
πŸ“„πŸ“ˆ
1.002x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-22 mpage/ft_aa_test_0 fcbf62d (NOGIL) 1.081x ↓
πŸ“„πŸ“ˆ
1.111x ↓
πŸ“„πŸ“ˆ
1.001x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-22 python/24c84d816f2f2ecb76b8 24c84d8 (NOGIL) 1.076x ↓
πŸ“„πŸ“ˆ
1.106x ↓
πŸ“„πŸ“ˆ
2025-01-22 colesbury/revert_gh_128914 68ce740 (NOGIL) 1.056x ↓
πŸ“„πŸ“ˆ
1.086x ↓
πŸ“„πŸ“ˆ
1.025x ↑
πŸ“„πŸ“ˆπŸ§ 
2025-01-22 colesbury/revert_gh_128914 68ce740 1.089x ↑
πŸ“„πŸ“ˆ
1.051x ↑
πŸ“„πŸ“ˆ
1.005x ↑
πŸ“„πŸ“ˆπŸ§ 
2025-01-22 python/86c1a60d5a28cfb51f88 86c1a60 1.089x ↑
πŸ“„πŸ“ˆ
1.051x ↑
πŸ“„πŸ“ˆ
1.001x ↑
πŸ“„πŸ“ˆπŸ§ 
2025-01-22 python/86c1a60d5a28cfb51f88 86c1a60 (NOGIL) 1.084x ↓
πŸ“„πŸ“ˆ
1.113x ↓
πŸ“„πŸ“ˆ
2025-01-22 python/767cf708449fbf13826d 767cf70 1.088x ↑
πŸ“„πŸ“ˆ
1.050x ↑
πŸ“„πŸ“ˆ
1.004x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-21 python/01bcf13a1c5bfca5124c 01bcf13 (NOGIL) 1.075x ↓
πŸ“„πŸ“ˆ
1.105x ↓
πŸ“„πŸ“ˆ
2025-01-21 mpage/aa_test_6 01bcf13 1.087x ↑
πŸ“„πŸ“ˆ
1.049x ↑
πŸ“„πŸ“ˆ
1.006x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-21 python/01bcf13a1c5bfca5124c 01bcf13 1.093x ↑
πŸ“„πŸ“ˆ
1.054x ↑
πŸ“„πŸ“ˆ
1.002x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-21 mpage/aa_test_5 2ea0525 1.089x ↑
πŸ“„πŸ“ˆ
1.051x ↑
πŸ“„πŸ“ˆ
1.001x ↑
πŸ“„πŸ“ˆπŸ§ 
2025-01-21 python/29caec62ee0650493c83 29caec6 1.094x ↑
πŸ“„πŸ“ˆ
1.056x ↑
πŸ“„πŸ“ˆ
2025-01-20 python/e65a1eb93ae35f9fbab1 e65a1eb (NOGIL) 1.081x ↓
πŸ“„πŸ“ˆ
1.110x ↓
πŸ“„πŸ“ˆ
1.004x ↑
πŸ“„πŸ“ˆπŸ§ 
2025-01-20 python/e65a1eb93ae35f9fbab1 e65a1eb 1.096x ↑
πŸ“„πŸ“ˆ
1.057x ↑
πŸ“„πŸ“ˆ
2025-01-20 python/e54ac3b69edacf414998 e54ac3b (NOGIL) 1.083x ↓
πŸ“„πŸ“ˆ
1.113x ↓
πŸ“„πŸ“ˆ
2025-01-20 python/ab61d3f4303d14a413bc ab61d3f (NOGIL) 1.083x ↓
πŸ“„πŸ“ˆ
1.112x ↓
πŸ“„πŸ“ˆ
1.031x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-20 python/0a6412f9cc9e694e7629 0a6412f (NOGIL) 1.052x ↓
πŸ“„πŸ“ˆ
1.083x ↓
πŸ“„πŸ“ˆ
2025-01-20 python/bca35f0e782848ae2acd bca35f0 1.093x ↑
πŸ“„πŸ“ˆ
1.055x ↑
πŸ“„πŸ“ˆ
2025-01-20 python/bca35f0e782848ae2acd bca35f0 (NOGIL) 1.058x ↓
πŸ“„πŸ“ˆ
1.089x ↓
πŸ“„πŸ“ˆ
1.139x ↓
πŸ“„πŸ“ˆπŸ§ 
2025-01-17 python/3829104ab412a47bf3f3 3829104 (NOGIL) 1.060x ↓
πŸ“„πŸ“ˆ
1.090x ↓
πŸ“„πŸ“ˆ
2025-01-21 Yhg1s/bb495b05f9c1a3d5224b bb495b0 (NOGIL) 1.166x ↓
πŸ“„πŸ“ˆ
1.193x ↓
πŸ“„πŸ“ˆ
1.001x ↓
πŸ“„πŸ“ˆπŸ§ 

* indicates that the exact same versions of pyperformance was not used.

Longitudinal speed improvement

Improvement of the geometric mean of key merged benchmarks, computed with pyperf compare. The results have a resolution of 0.01 (1%).

Configuration speed improvement

Documentation

Running benchmarks from the GitHub web UI

Visit the πŸ”’ benchmark action and click the "Run Workflow" button.

The available parameters are:

  • fork: The fork of CPython to benchmark. If benchmarking a pull request, this would normally be your GitHub username.
  • ref: The branch, tag or commit SHA to benchmark. If a SHA, it must be the full SHA, since finding it by a prefix is not supported.
  • machine: The machine to run on. One of linux-amd64 (default), windows-amd64, darwin-arm64 or all.
  • benchmark_base: If checked, the base of the selected branch will also be benchmarked. The base is determined by running git merge-base upstream/main $ref.
  • pystats: If checked, collect the pystats from running the benchmarks.

To watch the progress of the benchmark, select it from the πŸ”’ benchmark action page. It may be canceled from there as well. To show only your benchmark workflows, select your GitHub ID from the "Actor" dropdown.

When the benchmarking is complete, the results are published to this repository and will appear in the complete table. Each set of benchmarks will have:

  • The raw .json results from pyperformance.
  • Comparisons against important reference releases, as well as the merge base of the branch if benchmark_base was selected. These include
    • A markdown table produced by pyperf compare_to.
    • A set of "violin" plots showing the distribution of results for each benchmark.

The most convenient way to get results locally is to clone this repo and git pull from it.

Running benchmarks from the GitHub CLI

To automate benchmarking runs, it may be more convenient to use the GitHub CLI. Once you have gh installed and configured, you can run benchmarks by cloning this repository and then from inside it:

gh workflow run benchmark.yml -f fork=me -f ref=my_branch

Any of the parameters described above are available at the commandline using the -f key=value syntax.

Collecting Linux perf profiling data

To collect Linux perf sampling profile data for a benchmarking run, run the _benchmark action and check the perf checkbox. Follow this by a run of the _generate action to regenerate the plots.

License

This repo is licensed under the BSD 3-Clause License, as found in the LICENSE file.

About

Benchmark results for free-threaded builds of Python

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published