-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_segment.py
351 lines (276 loc) · 13.3 KB
/
train_segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import argparse
import glob
import os
import pandas as pd
import re
import shutil
import torch
import torch.nn.functional as F
from sklearn.metrics import average_precision_score, precision_recall_curve
from torch.autograd import Variable
from torch.nn.utils import clip_grad_norm
from torch.optim import Adam, SGD
from torch.utils.data import DataLoader
from torch.utils.data.sampler import WeightedRandomSampler, RandomSampler
from tqdm import trange, tqdm
from dataset import MotionDataset
from model import MotionModel
def compute_loss(output, target, args):
n_classes = output.shape[1]
if args.label_smoothing:
target = target * (1 - args.label_smoothing) + \
(1 - target) * args.label_smoothing / (n_classes - 1)
return F.binary_cross_entropy_with_logits(output, target)
def f1_score(targets, predictions, multiple_thr=False):
if multiple_thr:
category_f1s = []
for i in range(targets.shape[1]):
p, r, _ = precision_recall_curve(targets[:, i], predictions[:, i])
f1 = 2 * (p * r) / (p + r)
category_f1s.append(max(f1))
category_f1s = torch.FloatTensor(category_f1s)
support = targets.sum(dim=0)
microF1 = (category_f1s * support).sum() / support.sum()
macroF1 = category_f1s.mean()
return microF1, macroF1
else:
p, r, _ = precision_recall_curve(targets.view(-1), predictions.view(-1))
f1 = 2 * (p * r) / (p + r)
return max(f1)
def evaluate(loader, model, args):
model.eval()
avg_loss = 0.0
targets = []
predictions = []
progress_bar = tqdm(loader, disable=args.no_progress)
for i, (x, y) in enumerate(progress_bar):
if args.cuda:
x = x.cuda()
y = y.cuda(async=True)
x = Variable(x, volatile=True)
y = Variable(y, volatile=True)
y_hat = model.segment(x)
y = y.squeeze()
y_hat = y_hat.squeeze()
loss = compute_loss(y_hat, y, args)
avg_loss += loss.data[0]
y = y.data.cpu()
y_hat = y_hat.data.cpu()
targets.append(y)
predictions.append(y_hat)
run_loss = avg_loss / (i + 1)
progress_bar.set_postfix({
'loss': '{:6.4f}'.format(run_loss),
# 'mAP': '{:4.3f}'.format(run_ap)
})
predictions = torch.cat(predictions, dim=0)
targets = torch.cat(targets, dim=0)
micro_ap = average_precision_score(targets, predictions, average='micro')
macro_ap = average_precision_score(targets, predictions, average='macro')
single_thr_f1 = f1_score(targets, predictions)
multi_thr_micro_f1, multi_thr_macro_f1 = f1_score(targets, predictions, multiple_thr=True)
return run_loss, micro_ap, macro_ap, single_thr_f1, multi_thr_micro_f1, multi_thr_macro_f1
def train(loader, model, optimizer, epoch, args):
model.train()
optimizer.zero_grad()
avg_loss = 0.0
n_samples = len(loader.dataset)
progress_bar = tqdm(loader, disable=args.no_progress)
for i, (x, y) in enumerate(progress_bar):
if args.cuda:
x = x.cuda()
y = y.cuda(async=True)
x = Variable(x, requires_grad=False)
y = Variable(y, requires_grad=False)
y_hat = model.segment(x)
y = y.squeeze()
y_hat = y_hat.squeeze()
loss = compute_loss(y_hat, y, args)
loss.backward()
avg_loss += loss.data[0]
if (i + 1) % args.accumulate == 0 or (i + 1) == n_samples:
if args.clip_norm:
clip_grad_norm(model.parameters(), args.clip_norm)
optimizer.step()
optimizer.zero_grad()
avg_loss /= args.accumulate
progress_bar.set_postfix({
'loss': '{:6.4f}'.format(avg_loss),
})
print('Train Epoch {} [{}/{}]: Loss = {:6.4f}'.format(
epoch, i + 1, n_samples, avg_loss), file=args.log, flush=True)
avg_loss = 0
def save_checkpoint(state, is_best, filename):
torch.save(state, filename)
if is_best:
base_dir = os.path.dirname(filename)
best_filename = os.path.join(base_dir, 'model_best.pth.tar')
shutil.copyfile(filename, best_filename)
def get_last_checkpoint(run_dir):
def get_epoch(fname):
epoch_regex = r'.*epoch_(\d+).pth'
matches = re.match(epoch_regex, fname)
return int(matches.groups()[0]) if matches else None
checkpoints = glob.glob(os.path.join(run_dir, 'epoch_*.pth'))
checkpoints = [(get_epoch(i), i) for i in checkpoints]
last_checkpoint = max(checkpoints)[1]
return last_checkpoint
def main(args):
# Use CUDA?
args.cuda = args.cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# Load datasets and build data loaders
val_dataset = MotionDataset(args.val_data, fps=args.fps, mapper=args.mapper)
val_actions = val_dataset.actions.keys()
train_dataset = MotionDataset(args.train_data, keep_actions=val_actions, fps=args.fps, offset=args.offset, mapper=args.mapper)
train_actions = train_dataset.actions.keys()
# with open('a.txt', 'w') as f1, open('b.txt', 'w') as f2:
# f1.write('\n'.join(map(str, train_dataset.actions.keys())))
# f2.write('\n'.join(map(str, val_dataset.actions.keys())))
assert len(train_actions) == len(val_actions), \
"Train and val sets should have same number of actions ({} vs {})".format(
len(train_actions), len(val_actions))
in_size, out_size = train_dataset.get_data_size()
if args.balance == 'none':
sampler = RandomSampler(train_dataset)
else:
weights = train_dataset.get_weights()
sampler = WeightedRandomSampler(weights, len(weights))
train_loader = DataLoader(train_dataset, batch_size=1, sampler=sampler, num_workers=1, pin_memory=args.cuda)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=1, pin_memory=args.cuda)
# Build the model
model = MotionModel(in_size, out_size,
hidden=args.hd,
dropout=args.dropout,
bidirectional=args.bidirectional,
stack=args.stack,
layers=args.layers,
embed=args.embed)
if args.cuda:
model.cuda()
# Create the optimizer and start training-eval loop
if args.optim == 'adam':
optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
elif args.optim == 'sgd':
optimizer = SGD(model.parameters(), lr=args.lr, weight_decay=args.wd)
# Resume training?
if args.resume:
run_dir = args.resume
last_checkpoint = get_last_checkpoint(run_dir)
checkpoint = torch.load(last_checkpoint)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
best_ap = checkpoint['best_micro_ap']
start_epoch = checkpoint['epoch'] + 1
else:
best_ap = 0
start_epoch = 1
parameters = vars(args)
train_fname = os.path.splitext(os.path.basename(args.train_data))[0]
val_fname = os.path.splitext(os.path.basename(args.val_data))[0]
# Create the run directory and log file
run_name = 'segment_tr-{1[train]}_vl-{1[val]}_' \
'bi{0[bidirectional]}_' \
'emb{0[embed]}_' \
'h{0[hd]}_' \
's{0[stack]}_' \
'l{0[layers]}_' \
'{0[head]}_' \
'a{0[accumulate]}_' \
'c{0[clip_norm]}_' \
'd{0[dropout]}_' \
'lr{0[lr]}_' \
'wd{0[wd]}_' \
'e{0[epochs]}_' \
'f{0[fps]:g}_' \
'o-{0[offset]}_' \
'opt-{0[optim]}_' \
'ls{0[label_smoothing]}_' \
'bal-{0[balance]}'.format(parameters, dict(train=train_fname, val=val_fname))
runs_parent_dir = 'debug' if args.debug else args.run_dir
run_dir = os.path.join(runs_parent_dir, run_name)
if not os.path.exists(run_dir):
os.makedirs(run_dir)
elif not args.debug:
return
params = pd.DataFrame(parameters, index=[0]) # an index is mandatory for a single line
params_fname = os.path.join(run_dir, 'params.csv')
params.to_csv(params_fname, index=False)
with pd.option_context('display.width', None), pd.option_context('max_columns', None):
print(params)
log_file = os.path.join(run_dir, 'log.txt')
args.log = open(log_file, 'a+')
progress_bar = trange(start_epoch, args.epochs + 1, initial=start_epoch, disable=args.no_progress)
for epoch in progress_bar:
progress_bar.set_description('TRAIN [CurBestAP={:4.3f}]'.format(best_ap))
train(train_loader, model, optimizer, epoch, args)
progress_bar.set_description('EVAL [CurBestAP={:4.3f}]'.format(best_ap))
metrics = evaluate(val_loader, model, args)
print('Eval Epoch {}: '
'Loss={:6.4f} '
'microAP={:4.3f} '
'macroAP={:4.3f} '
'F1={:4.3f} '
'microMultiF1={:4.3f} '
'macroMultiF1={:4.3f}'.format(epoch, *metrics),
file=args.log, flush=True)
current_micro_ap = metrics[1]
is_best = current_micro_ap > best_ap
best_ap = max(best_ap, current_micro_ap)
# SAVE MODEL
if args.keep:
fname = 'epoch_{:02d}.pth'.format(epoch)
else:
fname = 'last_checkpoint.pth'
fname = os.path.join(run_dir, fname)
save_checkpoint({
'epoch': epoch,
'best_micro_ap': best_ap,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, is_best, fname)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train model on motion data',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# DATA PARAMS
parser.add_argument('train_data', help='path to train data file (Pickle file)')
parser.add_argument('val_data', help='path to val data file (Pickle file)')
parser.add_argument('--mapper', help='class mapper csv file')
parser.add_argument('-f', '--fps', type=float, default=120, help='resampling FPS')
parser.add_argument('-o', '--offset', choices=['none', 'random'], default='random', help='offset mode when resampling training data')
parser.add_argument('--balance', choices=['none'], default='none', help='how to sample during training')
parser.add_argument('--ls', '--label-smoothing', type=float, dest='label_smoothing', default=0.0, help='smooth one-hot labels by this factor')
# NETWORK PARAMS
parser.add_argument('--emb', '--embed', dest='embed', type=int, default=64, help='sequence embedding dimensionality (0 for none)')
parser.add_argument('-b', '--bidirectional', action='store_true', dest='bidirectional', help='use bidirectional LSTM')
parser.add_argument('-u', '--unidirectional', action='store_false', dest='bidirectional', help='use unidirectional LSTM')
parser.add_argument('--hd', '--hidden-dim', type=int, default=1024, help='LSTM hidden state dimension')
parser.add_argument('-s', '--stack', type=int, default=1, help='how many LSTMs to stack')
parser.add_argument('-l', '--layers', type=int, default=1, help='how many layers for fully connected classifier')
parser.add_argument('-d', '--dropout', type=float, default=0.5, help='dropout applied on hidden state')
parser.add_argument('--head', choices=['sigmoid'], default='sigmoid', help='networks head')
# OPTIMIZER PARAMS
parser.add_argument('--optim', choices=['sgd', 'adam'], default='adam', help='optimizer')
# parser.add_argument('-m','--momentum', type=float, default=0.9, help='momentum (only for SGD)')
parser.add_argument('-a', '--accumulate', type=int, default=1, help='batch accumulation')
parser.add_argument('-c', '--clip-norm', type=float, default=10.0, help='max gradient norm (0 for no clipping)')
parser.add_argument('-e', '--epochs', type=int, default=200, help='number of training epochs')
parser.add_argument('--lr', '--learning-rate', type=float, default=0.0005, help='learning rate')
parser.add_argument('--wd', '--weight-decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('-r', '--resume', help='run dir to resume training from')
# MISC PARAMS
parser.add_argument('--keep', action='store_true', dest='keep', help='keep all checkpoints evaluated during training')
parser.add_argument('--no-keep', action='store_false', dest='keep', help='keep only last and best checkpoints')
parser.add_argument('--no-cuda', action='store_false', dest='cuda', help='disable CUDA acceleration')
parser.add_argument('--no-progress', action='store_true', help='disable progress bars')
parser.add_argument('--run-dir', default='runs', help='where to place this run')
parser.add_argument('--seed', type=int, default=42, help='random seed to reproduce runs')
parser.add_argument('--debug', action='store_true', help='debug mode')
parser.set_defaults(bidirectional=True)
parser.set_defaults(cuda=True)
parser.set_defaults(debug=False)
parser.set_defaults(keep=False)
args = parser.parse_args()
main(args)