|
| 1 | +import os |
| 2 | +import cog |
| 3 | +import tempfile |
| 4 | +import zipfile |
| 5 | +from pathlib import Path |
| 6 | +import argparse |
| 7 | +import data.utils |
| 8 | +import model.utils as model_utils |
| 9 | +from test import predict_song |
| 10 | +from model.waveunet import Waveunet |
| 11 | + |
| 12 | + |
| 13 | +class waveunetPredictor(cog.Predictor): |
| 14 | + def setup(self): |
| 15 | + """Init wave u net model""" |
| 16 | + parser = argparse.ArgumentParser() |
| 17 | + parser.add_argument( |
| 18 | + "--instruments", |
| 19 | + type=str, |
| 20 | + nargs="+", |
| 21 | + default=["bass", "drums", "other", "vocals"], |
| 22 | + help='List of instruments to separate (default: "bass drums other vocals")', |
| 23 | + ) |
| 24 | + parser.add_argument( |
| 25 | + "--cuda", action="store_true", help="Use CUDA (default: False)" |
| 26 | + ) |
| 27 | + parser.add_argument( |
| 28 | + "--features", |
| 29 | + type=int, |
| 30 | + default=32, |
| 31 | + help="Number of feature channels per layer", |
| 32 | + ) |
| 33 | + parser.add_argument( |
| 34 | + "--load_model", |
| 35 | + type=str, |
| 36 | + default="checkpoints/waveunet/model", |
| 37 | + help="Reload a previously trained model", |
| 38 | + ) |
| 39 | + parser.add_argument("--batch_size", type=int, default=4, help="Batch size") |
| 40 | + parser.add_argument( |
| 41 | + "--levels", type=int, default=6, help="Number of DS/US blocks" |
| 42 | + ) |
| 43 | + parser.add_argument( |
| 44 | + "--depth", type=int, default=1, help="Number of convs per block" |
| 45 | + ) |
| 46 | + parser.add_argument("--sr", type=int, default=44100, help="Sampling rate") |
| 47 | + parser.add_argument( |
| 48 | + "--channels", type=int, default=2, help="Number of input audio channels" |
| 49 | + ) |
| 50 | + parser.add_argument( |
| 51 | + "--kernel_size", |
| 52 | + type=int, |
| 53 | + default=5, |
| 54 | + help="Filter width of kernels. Has to be an odd number", |
| 55 | + ) |
| 56 | + parser.add_argument( |
| 57 | + "--output_size", type=float, default=2.0, help="Output duration" |
| 58 | + ) |
| 59 | + parser.add_argument( |
| 60 | + "--strides", type=int, default=4, help="Strides in Waveunet" |
| 61 | + ) |
| 62 | + parser.add_argument( |
| 63 | + "--conv_type", |
| 64 | + type=str, |
| 65 | + default="gn", |
| 66 | + help="Type of convolution (normal, BN-normalised, GN-normalised): normal/bn/gn", |
| 67 | + ) |
| 68 | + parser.add_argument( |
| 69 | + "--res", |
| 70 | + type=str, |
| 71 | + default="fixed", |
| 72 | + help="Resampling strategy: fixed sinc-based lowpass filtering or learned conv layer: fixed/learned", |
| 73 | + ) |
| 74 | + parser.add_argument( |
| 75 | + "--separate", |
| 76 | + type=int, |
| 77 | + default=1, |
| 78 | + help="Train separate model for each source (1) or only one (0)", |
| 79 | + ) |
| 80 | + parser.add_argument( |
| 81 | + "--feature_growth", |
| 82 | + type=str, |
| 83 | + default="double", |
| 84 | + help="How the features in each layer should grow, either (add) the initial number of features each time, or multiply by 2 (double)", |
| 85 | + ) |
| 86 | + """ |
| 87 | + parser.add_argument('--input', type=str, default=str(input), |
| 88 | + help="Path to input mixture to be separated") |
| 89 | + parser.add_argument('--output', type=str, default=out_path, help="Output path (same folder as input path if not set)") |
| 90 | + """ |
| 91 | + args = parser.parse_args([]) |
| 92 | + self.args = args |
| 93 | + |
| 94 | + num_features = ( |
| 95 | + [args.features * i for i in range(1, args.levels + 1)] |
| 96 | + if args.feature_growth == "add" |
| 97 | + else [args.features * 2 ** i for i in range(0, args.levels)] |
| 98 | + ) |
| 99 | + target_outputs = int(args.output_size * args.sr) |
| 100 | + self.model = Waveunet( |
| 101 | + args.channels, |
| 102 | + num_features, |
| 103 | + args.channels, |
| 104 | + args.instruments, |
| 105 | + kernel_size=args.kernel_size, |
| 106 | + target_output_size=target_outputs, |
| 107 | + depth=args.depth, |
| 108 | + strides=args.strides, |
| 109 | + conv_type=args.conv_type, |
| 110 | + res=args.res, |
| 111 | + separate=args.separate, |
| 112 | + ) |
| 113 | + |
| 114 | + if args.cuda: |
| 115 | + self.model = model_utils.DataParallel(model) |
| 116 | + print("move model to gpu") |
| 117 | + self.model.cuda() |
| 118 | + |
| 119 | + print("Loading model from checkpoint " + str(args.load_model)) |
| 120 | + state = model_utils.load_model(self.model, None, args.load_model, args.cuda) |
| 121 | + print("Step", state["step"]) |
| 122 | + |
| 123 | + @cog.input("input", type=Path, help="audio mixture path") |
| 124 | + def predict(self, input): |
| 125 | + """Separate tracks from input mixture audio""" |
| 126 | + |
| 127 | + out_path = Path(tempfile.mkdtemp()) |
| 128 | + zip_path = Path(tempfile.mkdtemp()) / "output.zip" |
| 129 | + |
| 130 | + preds = predict_song(self.args, input, self.model) |
| 131 | + |
| 132 | + out_names = [] |
| 133 | + for inst in preds.keys(): |
| 134 | + temp_n = os.path.join( |
| 135 | + str(out_path), os.path.basename(str(input)) + "_" + inst + ".wav" |
| 136 | + ) |
| 137 | + data.utils.write_wav(temp_n, preds[inst], self.args.sr) |
| 138 | + out_names.append(temp_n) |
| 139 | + |
| 140 | + with zipfile.ZipFile(str(zip_path), "w") as zf: |
| 141 | + for i in out_names: |
| 142 | + zf.write(str(i)) |
| 143 | + |
| 144 | + return zip_path |
0 commit comments