-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtuple.hpp
1233 lines (1001 loc) · 38.1 KB
/
tuple.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* @file kat/containers/tuple.hpp
*
* @brief This file implements `kat::tuple`, an equivalent of C++11's
* `std::tuple` which may be used both in host-side and CUDA-device-side
* code.
*/
//
// Original code Copyright (c) Electronic Arts Inc. All rights reserved
// Modifications Copyright (c) 2020 Eyal Rozenberg.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Note: Retrieved from https://github.com/electronicarts/EASTL/ , master branch,
// on 2020-03-06.
#ifndef CUDA_KAT_TUPLE_HPP_
#define CUDA_KAT_TUPLE_HPP_
#include <kat/common.hpp>
#include <kat/utility.hpp>
#include <kat/reference_wrapper.hpp>
#include <functional>
#include <type_traits>
#include <tuple>
// Forward declarations - originally from EASTL/detail/tuple_fwd_decls.h
namespace kat {
template <typename... T>
class tuple;
template <typename Tuple>
class tuple_size;
template <size_t I, typename Tuple>
class tuple_element;
template <size_t I, typename Tuple>
using tuple_element_t = typename tuple_element<I, Tuple>::type;
// const typename for tuple_element_t, for when tuple or tuple_impl cannot itself be const
template <size_t I, typename Tuple>
using const_tuple_element_t = typename std::conditional<
std::is_lvalue_reference<tuple_element_t<I, Tuple>>::value,
typename std::add_lvalue_reference<const typename std::remove_reference<tuple_element_t<I, Tuple>>::type >,
const tuple_element_t<I, Tuple>
>::type;
// get
template <size_t I, typename... Ts_>
KAT_HD tuple_element_t<I, tuple<Ts_...>>& get(tuple<Ts_...>& t);
template <size_t I, typename... Ts_>
KAT_HD const_tuple_element_t<I, tuple<Ts_...>>& get(const tuple<Ts_...>& t);
template <size_t I, typename... Ts_>
KAT_HD tuple_element_t<I, tuple<Ts_...>>&& get(tuple<Ts_...>&& t);
template <typename T, typename... ts_>
KAT_HD T& get(tuple<ts_...>& t);
template <typename T, typename... ts_>
KAT_HD const T& get(const tuple<ts_...>& t);
template <typename T, typename... ts_>
KAT_HD T&& get(tuple<ts_...>&& t);
} // namespace kat
//EA_DISABLE_VC_WARNING(4623) // warning C4623: default constructor was implicitly defined as deleted
//EA_DISABLE_VC_WARNING(4625) // warning C4625: copy constructor was implicitly defined as deleted
//EA_DISABLE_VC_WARNING(4510) // warning C4510: default constructor could not be generated
namespace kat
{
// non-recursive tuple implementation based on libc++ tuple implementation and description at
// http://mitchnull.blogspot.ca/2012/06/c11-tuple-implementation-details-part-1.html
// tuple_types helper
template <typename... Ts> struct tuple_types {};
// tuple_size helper
template <typename T> class tuple_size {};
template <typename T> class tuple_size<const T> : public tuple_size<T> {};
template <typename T> class tuple_size<volatile T> : public tuple_size<T> {};
template <typename T> class tuple_size<const volatile T> : public tuple_size<T> {};
template <typename... Ts> class tuple_size<tuple_types<Ts...>> : public std::integral_constant<size_t, sizeof...(Ts)> {};
template <typename... Ts> class tuple_size<tuple<Ts...>> : public std::integral_constant<size_t, sizeof...(Ts)> {};
template <typename... Ts> class tuple_size<std::tuple<Ts...>> : public std::integral_constant<size_t, sizeof...(Ts)> {};
// Originally from EASTL's tuple implementation in their <utility> header
template <typename T1, typename T2>
class tuple_size<std::pair<T1, T2>> : public std::integral_constant<size_t, 2> {};
template <typename T1, typename T2>
class tuple_size<const std::pair<T1, T2>> : public std::integral_constant<size_t, 2> {};
#if __cplusplus >= 201703L
template <class T>
constexpr size_t tuple_size_v = tuple_size<T>::value;
#endif
namespace detail
{
template <typename TupleIndices, typename... Ts>
struct tuple_impl;
} // namespace detail
template <typename Indices, typename... Ts>
class tuple_size<detail::tuple_impl<Indices, Ts...>> : public std::integral_constant<size_t, sizeof...(Ts)> { };
// tuple_element helper to be able to isolate a type given an index
template <size_t I, typename T>
class tuple_element { };
template <size_t I>
class tuple_element<I, tuple_types<>>
{
public:
static_assert(I != I, "tuple_element index out of range");
};
template <typename H, typename... Ts>
class tuple_element<0, tuple_types<H, Ts...>>
{
public:
using type = H;
};
template <size_t I, typename H, typename... Ts>
class tuple_element<I, tuple_types<H, Ts...>>
{
public:
using type = tuple_element_t<I - 1, tuple_types<Ts...>>;
};
// specialization for tuple
template <size_t I, typename... Ts>
class tuple_element<I, tuple<Ts...>>
{
public:
using type = tuple_element_t<I, tuple_types<Ts...>>;
};
// tuple-std-tuple compatibility adaptation of the above
template <size_t I, typename... Ts>
class tuple_element<I, std::tuple<Ts...>>
{
public:
using type = typename std::tuple_element<I, std::tuple<Ts...>>::type;
};
template <size_t I, typename... Ts>
class tuple_element<I, const tuple<Ts...>>
{
public:
using type = typename std::add_const<tuple_element_t<I, tuple_types<Ts...>>>::type;
};
// tuple-std-tuple compatibility adaptation of the above
template <size_t I, typename... Ts>
class tuple_element<I, const std::tuple<Ts...>>
{
public:
using type = typename std::tuple_element<I, const std::tuple<Ts...>>::type;
};
template <size_t I, typename... Ts>
class tuple_element<I, volatile tuple<Ts...>>
{
public:
using type = typename std::add_volatile<tuple_element_t<I, tuple_types<Ts...>>>::type;
};
// tuple-std-tuple compatibility adaptation of the above
template <size_t I, typename... Ts>
class tuple_element<I, volatile std::tuple<Ts...>>
{
public:
using type = typename std::tuple_element<I, volatile std::tuple<Ts...>>::type;
};
template <size_t I, typename... Ts>
class tuple_element<I, const volatile tuple<Ts...>>
{
public:
using type = typename std::add_cv<tuple_element_t<I, tuple_types<Ts...>>>::type;
};
// tuple-std-tuple compatibility adaptation of the above
template <size_t I, typename... Ts>
class tuple_element<I, const volatile std::tuple<Ts...>>
{
public:
using type = typename std::tuple_element<I, const volatile std::tuple<Ts...>>::type;
};
// specialization for tuple_impl
template <size_t I, typename Indices, typename... Ts>
class tuple_element<I, detail::tuple_impl<Indices, Ts...>> : public tuple_element<I, tuple<Ts...>>
{
};
template <size_t I, typename Indices, typename... Ts>
class tuple_element<I, const detail::tuple_impl<Indices, Ts...>> : public tuple_element<I, const tuple<Ts...>>
{
};
template <size_t I, typename Indices, typename... Ts>
class tuple_element<I, volatile detail::tuple_impl<Indices, Ts...>> : public tuple_element<I, volatile tuple<Ts...>>
{
};
template <size_t I, typename Indices, typename... Ts>
class tuple_element<I, const volatile detail::tuple_impl<Indices, Ts...>> : public tuple_element<
I, const volatile tuple<Ts...>>
{
};
// Originally from EASTL's tuple implementation in their <utility> header
template<typename T1, typename T2>
class tuple_element<0, std::pair<T1, T2>> {
public:
typedef T1 type;
};
template<typename T1, typename T2>
class tuple_element<1, std::pair<T1, T2>> {
public:
typedef T2 type;
};
template<typename T1, typename T2>
class tuple_element<0, const std::pair<T1, T2>> {
public:
typedef const T1 type;
};
template<typename T1, typename T2>
class tuple_element<1, const std::pair<T1, T2>> {
public:
typedef const T2 type;
};
// attempt to isolate index given a type
template <typename T, typename Tuple>
struct tuple_index
{
};
template <typename T>
struct tuple_index<T, tuple_types<>>
{
typedef void DuplicateTypeCheck;
tuple_index() = delete; // tuple_index should only be used for compile-time assistance, and never be instantiated
static const size_t index = 0;
};
template <typename T, typename... TsRest>
struct tuple_index<T, tuple_types<T, TsRest...>>
{
typedef int DuplicateTypeCheck;
// after finding type T in the list of types, try to find type T in TsRest.
// If we stumble back into this version of tuple_index, i.e. type T appears twice in the list of types, then DuplicateTypeCheck will be of type int, and the static_assert will fail.
// If we don't, then we'll go through the version of tuple_index above, where all of the types have been exhausted, and DuplicateTypeCheck will be void.
static_assert(std::is_void<typename tuple_index<T, tuple_types<TsRest...>>::DuplicateTypeCheck>::value, "duplicate type T in tuple_vector::get<T>(); unique types must be provided in declaration, or only use get<size_t>()");
static const size_t index = 0;
};
template <typename T, typename TsHead, typename... TsRest>
struct tuple_index<T, tuple_types<TsHead, TsRest...>>
{
typedef typename tuple_index<T, tuple_types<TsRest...>>::DuplicateTypeCheck DuplicateTypeCheck;
static const size_t index = tuple_index<T, tuple_types<TsRest...>>::index + 1;
};
template <typename T, typename Indices, typename... Ts>
struct tuple_index<T, detail::tuple_impl<Indices, Ts...>> : public tuple_index<T, tuple_types<Ts...>>
{
};
namespace detail {
// swallow
//
// Provides a vessel to expand variadic packs.
//
template <typename... Ts>
constexpr KAT_HD void swallow(Ts&&...) {}
// tuple_leaf
//
template <size_t I, typename ValueType, bool IsEmpty = std::is_empty<ValueType>::value>
class tuple_leaf;
template <size_t I, typename ValueType, bool IsEmpty>
CONSTEXPR_SINCE_CPP_14 inline KAT_HD void swap(
tuple_leaf<I, ValueType, IsEmpty>& a,
tuple_leaf<I, ValueType, IsEmpty>& b
) noexcept(noexcept(kat::swap(a.get_internal(),b.get_internal())))
{
kat::swap(a.get_internal(), b.get_internal());
}
template <size_t I, typename ValueType, bool IsEmpty>
class tuple_leaf
{
public:
KAT_HD tuple_leaf() : mValue() {}
KAT_HD tuple_leaf(const tuple_leaf&) = default; // TODO: This might not work
KAT_HD tuple_leaf& operator=(const tuple_leaf&) = delete;
// We shouldn't need this explicit constructor as it should be handled by the template below but OSX clang
// is_constructible type trait incorrectly gives false for is_constructible<T&&, T&&>::value
KAT_HD explicit tuple_leaf(ValueType&& v) : mValue(std::move(v)) {}
template <typename T, typename = typename std::enable_if<std::is_constructible<ValueType, T&&>::value>::type>
KAT_HD explicit tuple_leaf(T&& t)
: mValue(std::forward<T>(t))
{
}
template <typename T>
KAT_HD explicit tuple_leaf(const tuple_leaf<I, T>& t)
: mValue(t.get_internal())
{
}
template <typename T>
KAT_HD tuple_leaf& operator=(T&& t)
{
mValue = std::forward<T>(t);
return *this;
}
KAT_HD int swap(tuple_leaf& t)
{
kat::detail::swap(*this, t);
return 0;
}
KAT_HD ValueType& get_internal() { return mValue; }
KAT_HD const ValueType& get_internal() const { return mValue; }
private:
ValueType mValue;
};
// tuple_leaf: Specialize for when ValueType is a reference
template <size_t I, typename ValueType, bool IsEmpty>
class tuple_leaf<I, ValueType&, IsEmpty>
{
public:
tuple_leaf(const tuple_leaf&) = default;
tuple_leaf& operator=(const tuple_leaf&) = delete;
template <typename T, typename = typename std::enable_if<std::is_constructible<ValueType, T&&>::value>::type>
KAT_HD explicit tuple_leaf(T&& t)
: mValue(std::forward<T>(t))
{
}
KAT_HD explicit tuple_leaf(ValueType& t) : mValue(t)
{
}
template <typename T>
KAT_HD explicit tuple_leaf(const tuple_leaf<I, T>& t)
: mValue(t.get_internal())
{
}
template <typename T>
KAT_HD tuple_leaf& operator=(T&& t)
{
mValue = std::forward<T>(t);
return *this;
}
KAT_HD int swap(tuple_leaf& t)
{
kat::detail::swap(*this, t);
return 0;
}
KAT_HD ValueType& get_internal() { return mValue; }
KAT_HD const ValueType& get_internal() const { return mValue; }
private:
ValueType& mValue;
};
// tuple_leaf: partial specialization for when we can use the Empty Base Class Optimization
template <size_t I, typename ValueType>
class tuple_leaf<I, ValueType, true> : private ValueType
{
public:
// std::true_type / std::false_type constructors for case where ValueType is default constructible and should be value
// initialized and case where it is not
tuple_leaf(const tuple_leaf&) = default;
template <typename T, typename = typename std::enable_if<std::is_constructible<ValueType, T&&>::value>::type>
KAT_HD explicit tuple_leaf(T&& t)
: ValueType(std::forward<T>(t))
{
}
template <typename T>
KAT_HD explicit tuple_leaf(const tuple_leaf<I, T>& t)
: ValueType(t.get_internal())
{
}
template <typename T>
KAT_HD tuple_leaf& operator=(T&& t)
{
ValueType::operator=(std::forward<T>(t));
return *this;
}
KAT_HD int swap(tuple_leaf& t)
{
kat::detail::swap(*this, t);
return 0;
}
KAT_HD ValueType& get_internal() { return static_cast<ValueType&>(*this); }
KAT_HD const ValueType& get_internal() const { return static_cast<const ValueType&>(*this); }
private:
KAT_HD tuple_leaf& operator=(const tuple_leaf&) = delete;
};
// make_tuple_types
//
//
template <typename tuple_types, typename Tuple, size_t Start, size_t End>
struct make_tuple_types_impl;
template <typename... Types, typename Tuple, size_t Start, size_t End>
struct make_tuple_types_impl<tuple_types<Types...>, Tuple, Start, End>
{
typedef typename std::remove_reference<Tuple>::type tuple_type;
typedef typename make_tuple_types_impl<
tuple_types<Types..., typename std::conditional<std::is_lvalue_reference<Tuple>::value,
// append ref if Tuple is ref
tuple_element_t<Start, tuple_type>&,
// append non-ref otherwise
tuple_element_t<Start, tuple_type>>::type>,
Tuple, Start + 1, End>::type type;
};
template <typename... Types, typename Tuple, size_t End>
struct make_tuple_types_impl<tuple_types<Types...>, Tuple, End, End>
{
typedef tuple_types<Types...> type;
};
template <typename Tuple>
using make_tuple_types_t = typename make_tuple_types_impl<tuple_types<>, Tuple, 0,
tuple_size<typename std::remove_reference<Tuple>::type>::value>::type;
// tuple_impl
//
//
template <size_t I, typename Indices, typename... Ts>
inline KAT_HD tuple_element_t<I, tuple_impl<Indices, Ts...>>& get(tuple_impl<Indices, Ts...>& t);
template <size_t I, typename Indices, typename... Ts>
inline KAT_HD const_tuple_element_t<I, tuple_impl<Indices, Ts...>>& get(const tuple_impl<Indices, Ts...>& t);
template <size_t I, typename Indices, typename... Ts>
KAT_HD tuple_element_t<I, tuple_impl<Indices, Ts...>>&& get(tuple_impl<Indices, Ts...>&& t);
template <typename T, typename Indices, typename... Ts>
KAT_HD T& get(tuple_impl<Indices, Ts...>& t);
template <typename T, typename Indices, typename... Ts>
KAT_HD const T& get(const tuple_impl<Indices, Ts...>& t);
template <typename T, typename Indices, typename... Ts>
KAT_HD T&& get(tuple_impl<Indices, Ts...>&& t);
template <size_t... Indices, typename... Ts>
struct tuple_impl<std::integer_sequence<size_t, Indices...>, Ts...> : public tuple_leaf<Indices, Ts>...
{
tuple_impl() = default; // TODO: Probably won't work
// index_sequence changed to integer_sequence due to issues described below in VS2015 CTP 6.
// https://connect.microsoft.com/VisualStudio/feedback/details/1126958/error-in-template-parameter-pack-expansion-of-std-index-sequence
//
template <typename... Us, typename... ValueTypes>
explicit KAT_HD tuple_impl(std::integer_sequence<size_t, Indices...>, tuple_types<Us...>, ValueTypes&&... values)
: tuple_leaf<Indices, Ts>(std::forward<ValueTypes>(values))...
{
}
template <typename OtherTuple>
KAT_HD tuple_impl(OtherTuple&& t)
: tuple_leaf<Indices, Ts>(std::forward<tuple_element_t<Indices, make_tuple_types_t<OtherTuple>>>(get<Indices>(t)))...
{
}
template <typename OtherTuple>
KAT_HD tuple_impl& operator=(OtherTuple&& t)
{
swallow(tuple_leaf<Indices, Ts>::operator=(
std::forward<tuple_element_t<Indices, make_tuple_types_t<OtherTuple>>>(get<Indices>(t)))...);
return *this;
}
KAT_HD tuple_impl& operator=(const tuple_impl& t)
{
swallow(tuple_leaf<Indices, Ts>::operator=(static_cast<const tuple_leaf<Indices, Ts>&>(t).get_internal())...);
return *this;
}
KAT_HD void swap(tuple_impl& t) { swallow(tuple_leaf<Indices, Ts>::swap(static_cast<tuple_leaf<Indices, Ts>&>(t))...); }
};
template <size_t I, typename Indices, typename... Ts>
inline KAT_HD tuple_element_t<I, tuple_impl<Indices, Ts...>>& get(tuple_impl<Indices, Ts...>& t)
{
typedef tuple_element_t<I, tuple_impl<Indices, Ts...>> Type;
return static_cast<detail::tuple_leaf<I, Type>&>(t).get_internal();
}
template <size_t I, typename Indices, typename... Ts>
inline KAT_HD const_tuple_element_t<I, tuple_impl<Indices, Ts...>>& get(const tuple_impl<Indices, Ts...>& t)
{
typedef tuple_element_t<I, tuple_impl<Indices, Ts...>> Type;
return static_cast<const detail::tuple_leaf<I, Type>&>(t).get_internal();
}
template <size_t I, typename Indices, typename... Ts>
inline KAT_HD tuple_element_t<I, tuple_impl<Indices, Ts...>>&& get(tuple_impl<Indices, Ts...>&& t)
{
typedef tuple_element_t<I, tuple_impl<Indices, Ts...>> Type;
return static_cast<Type&&>(static_cast<detail::tuple_leaf<I, Type>&>(t).get_internal());
}
template <typename T, typename Indices, typename... Ts>
KAT_HD T& get(tuple_impl<Indices, Ts...>& t)
{
typedef tuple_index<T, tuple_impl<Indices, Ts...>> Index;
return static_cast<detail::tuple_leaf<Index::index, T>&>(t).get_internal();
}
template <typename T, typename Indices, typename... Ts>
inline KAT_HD const T& get(const tuple_impl<Indices, Ts...>& t)
{
typedef tuple_index<T, tuple_impl<Indices, Ts...>> Index;
return static_cast<const detail::tuple_leaf<Index::index, T>&>(t).get_internal();
}
template <typename T, typename Indices, typename... Ts>
inline KAT_HD T&& get(tuple_impl<Indices, Ts...>&& t)
{
typedef tuple_index<T, tuple_impl<Indices, Ts...>> Index;
return static_cast<T&&>(static_cast<detail::tuple_leaf<Index::index, T>&>(t).get_internal());
}
template <size_t... Indices, typename... Ts>
inline KAT_HOST std::tuple<Ts...> as_std_tuple(tuple_impl<std::integer_sequence<size_t, Indices...>, Ts...> ti);
// tuple_like
//
// type-trait that determines if a type is an eastl::tuple or an eastl::pair.
//
// TODO: Do we really need these for anything?
template <typename T> struct tuple_like : public std::false_type {};
template <typename T> struct tuple_like<const T> : public tuple_like<T> {};
template <typename T> struct tuple_like<volatile T> : public tuple_like<T> {};
template <typename T> struct tuple_like<const volatile T> : public tuple_like<T> {};
template <typename... Ts>
struct tuple_like<tuple<Ts...>> : public std::true_type {};
// tuple-std-tuple compatibility adaptation of the above
template <typename... Ts>
struct tuple_like<std::tuple<Ts...>> : public std::true_type {};
template <typename First, typename Second>
struct tuple_like<std::pair<First, Second>> : public std::true_type {};
// kat::pair ?
//template <typename First, typename Second>
//struct tuple_like<kat::pair<First, Second>> : public std::true_type {};
// tuple_convertible
//
//
//
template <bool IsSameSize, typename From, typename To>
struct tuple_convertible_impl : public std::false_type
{
};
template <typename... FromTypes, typename... ToTypes>
struct tuple_convertible_impl<true, tuple_types<FromTypes...>, tuple_types<ToTypes...>>
: public kat::bool_constant<conjunction<std::is_convertible<FromTypes, ToTypes>...>::value>
{
};
template <typename From, typename To,
bool = tuple_like<typename std::remove_reference<From>::type>::value,
bool = tuple_like<typename std::remove_reference<To>::type>::value>
struct tuple_convertible : public std::false_type
{
};
template <typename From, typename To>
struct tuple_convertible<From, To, true, true>
: public tuple_convertible_impl<tuple_size<typename std::remove_reference<From>::type>::value ==
tuple_size<typename std::remove_reference<To>::type>::value,
make_tuple_types_t<From>, make_tuple_types_t<To>>
{
};
// tuple_assignable
//
//
//
template <bool IsSameSize, typename Target, typename From>
struct tuple_assignable_impl : public std::false_type
{
};
template <typename... TargetTypes, typename... FromTypes>
struct tuple_assignable_impl<true, tuple_types<TargetTypes...>, tuple_types<FromTypes...>>
: public bool_constant<conjunction<std::is_assignable<TargetTypes, FromTypes>...>::value>
{
};
template <typename Target, typename From,
bool = tuple_like<typename std::remove_reference<Target>::type>::value,
bool = tuple_like<typename std::remove_reference<From>::type>::value>
struct tuple_assignable : public std::false_type
{
};
template <typename Target, typename From>
struct tuple_assignable<Target, From, true, true>
: public tuple_assignable_impl<
tuple_size<typename std::remove_reference<Target>::type>::value ==
tuple_size<typename std::remove_reference<From>::type>::value,
make_tuple_types_t<Target>, make_tuple_types_t<From>>
{
using parent_type = tuple_assignable_impl<
tuple_size<typename std::remove_reference<Target>::type>::value ==
tuple_size<typename std::remove_reference<From>::type>::value,
make_tuple_types_t<Target>, make_tuple_types_t<From>>;
};
// tuple_implicitly_convertible and tuple_explicitly_convertible
//
// helpers for constraining conditionally-explicit ctors
//
template <bool IsSameSize, typename TargetType, typename... FromTypes>
struct tuple_implicitly_convertible_impl : public std::false_type
{
};
template <typename... TargetTypes, typename... FromTypes>
struct tuple_implicitly_convertible_impl<true, tuple_types<TargetTypes...>, FromTypes...>
: public conjunction<
std::is_constructible<TargetTypes, FromTypes>...,
std::is_convertible<FromTypes, TargetTypes>...>
{
};
template <typename TargetTupleType, typename... FromTypes>
struct tuple_implicitly_convertible
: public tuple_implicitly_convertible_impl<
tuple_size<TargetTupleType>::value == sizeof...(FromTypes),
make_tuple_types_t<TargetTupleType>, FromTypes...>::type
{
};
template<typename TargetTupleType, typename... FromTypes>
using tuple_implicitly_convertible_t = std::enable_if_t<tuple_implicitly_convertible<TargetTupleType, FromTypes...>::value, bool>;
template <bool IsSameSize, typename TargetType, typename... FromTypes>
struct tuple_explicitly_convertible_impl : public std::false_type
{
};
template <typename... TargetTypes, typename... FromTypes>
struct tuple_explicitly_convertible_impl<true, tuple_types<TargetTypes...>, FromTypes...>
: public conjunction<
std::is_constructible<TargetTypes, FromTypes>...,
negation<conjunction<std::is_convertible<FromTypes, TargetTypes>...>>>
{
};
template <typename TargetTupleType, typename... FromTypes>
struct tuple_explicitly_convertible
: public tuple_explicitly_convertible_impl<
tuple_size<TargetTupleType>::value == sizeof...(FromTypes),
make_tuple_types_t<TargetTupleType>, FromTypes...>::type
{
};
template<typename TargetTupleType, typename... FromTypes>
using tuple_explicitly_convertible_t = std::enable_if_t<tuple_explicitly_convertible<TargetTupleType, FromTypes...>::value, bool>;
// tuple_equal
//
//
//
template <size_t I>
struct tuple_equal
{
template <typename Tuple1, typename Tuple2>
KAT_HD bool operator()(const Tuple1& t1, const Tuple2& t2)
{
static_assert(tuple_size<Tuple1>::value == tuple_size<Tuple2>::value, "comparing tuples of different sizes.");
return tuple_equal<I - 1>()(t1, t2) && get<I - 1>(t1) == get<I - 1>(t2);
}
};
template <>
struct tuple_equal<0>
{
template <typename Tuple1, typename Tuple2>
KAT_HD bool operator()(const Tuple1&, const Tuple2&)
{
return true;
}
};
// tuple_less
//
//
//
template <size_t I>
struct tuple_less
{
template <typename Tuple1, typename Tuple2>
KAT_HD bool operator()(const Tuple1& t1, const Tuple2& t2)
{
static_assert(tuple_size<Tuple1>::value == tuple_size<Tuple2>::value, "comparing tuples of different sizes.");
return tuple_less<I - 1>()(t1, t2) || (!tuple_less<I - 1>()(t2, t1) && get<I - 1>(t1) < get<I - 1>(t2));
}
};
template <>
struct tuple_less<0>
{
template <typename Tuple1, typename Tuple2>
KAT_HD bool operator()(const Tuple1&, const Tuple2&)
{
return false;
}
};
// MakeTupleReturnImpl
//
//
//
template <typename T> struct MakeTupleReturnImpl { typedef T type; };
template <typename T> struct MakeTupleReturnImpl<reference_wrapper<T>> { typedef T& type; };
template <typename T>
using make_tuple_return_t = typename MakeTupleReturnImpl<typename std::decay<T>::type>::type;
// tuple_cat helpers
//
//
//
// tuple_cat_2_impl
template <typename Tuple1, typename Is1, typename Tuple2, typename Is2>
struct tuple_cat_2_impl;
template <typename... T1s, size_t... I1s, typename... T2s, size_t... I2s>
struct tuple_cat_2_impl<tuple<T1s...>, index_sequence<I1s...>, tuple<T2s...>, index_sequence<I2s...>>
{
using result_type = tuple<T1s..., T2s...>;
template <typename Tuple1, typename Tuple2>
static KAT_HD result_type do_cat_2(Tuple1&& t1, Tuple2&& t2)
{
return result_type(get<I1s>(std::forward<Tuple1>(t1))..., get<I2s>(std::forward<Tuple2>(t2))...);
}
};
// tuple_cat_2
template <typename Tuple1, typename Tuple2>
struct tuple_cat_2 { };
template <typename... T1s, typename... T2s>
struct tuple_cat_2<tuple<T1s...>, tuple<T2s...>>
{
using Is1 = make_index_sequence<sizeof...(T1s)>;
using Is2 = make_index_sequence<sizeof...(T2s)>;
using tci_type = tuple_cat_2_impl<tuple<T1s...>, Is1, tuple<T2s...>, Is2>;
using result_type = typename tci_type::result_type;
template <typename Tuple1, typename Tuple2>
static inline KAT_HD result_type do_cat_2(Tuple1&& t1, Tuple2&& t2)
{
return tci_type::do_cat_2(std::forward<Tuple1>(t1), std::forward<Tuple2>(t2));
}
};
// tuple_cat
template <typename... Tuples>
struct tuple_cat;
template <typename Tuple1, typename Tuple2, typename... TuplesRest>
struct tuple_cat<Tuple1, Tuple2, TuplesRest...>
{
using first_result_type = typename tuple_cat_2<Tuple1, Tuple2>::result_type;
using result_type = typename tuple_cat<first_result_type, TuplesRest...>::result_type;
template <typename TupleArg1, typename TupleArg2, typename... TupleArgsRest>
static inline KAT_HD result_type do_cat(TupleArg1&& t1, TupleArg2&& t2, TupleArgsRest&&... ts)
{
return tuple_cat<first_result_type, TuplesRest...>::do_cat(
tuple_cat_2<TupleArg1, TupleArg2>::do_cat_2(std::forward<TupleArg1>(t1), std::forward<TupleArg2>(t2)),
std::forward<TupleArgsRest>(ts)...);
}
};
template <typename Tuple1, typename Tuple2>
struct tuple_cat<Tuple1, Tuple2>
{
using tc2_type = tuple_cat_2<Tuple1, typename std::remove_reference<Tuple2>::type>;
using result_type = typename tc2_type::result_type;
template <typename TupleArg1, typename TupleArg2>
static KAT_HD result_type do_cat(TupleArg1&& t1, TupleArg2&& t2)
{
return tc2_type::do_cat_2(std::forward<TupleArg1>(t1), std::forward<TupleArg2>(t2));
}
};
} // namespace detail
/**
* @brief A container of heterogenenous-type values, of a fixed-size,
* for use in host-side and CUDA-device-side code.
*
* see https://en.cppreference.com/w/cpp/utility/tuple
*/
template <typename T, typename... Ts>
class tuple<T, Ts...>
{
public:
tuple() = default; // TODO: This won't work
template <typename T2 = T,
detail::tuple_implicitly_convertible_t<tuple, const T2&, const Ts&...> = 0>
constexpr KAT_HD tuple(const T& t, const Ts&... ts)
: impl_(make_index_sequence<sizeof...(Ts) + 1>{}, detail::make_tuple_types_t<tuple>{}, t, ts...)
{
}
template <typename T2 = T,
detail::tuple_explicitly_convertible_t<tuple, const T2&, const Ts&...> = 0>
explicit constexpr KAT_HD tuple(const T& t, const Ts&... ts)
: impl_(make_index_sequence<sizeof...(Ts) + 1>{}, detail::make_tuple_types_t<tuple>{}, t, ts...)
{
}
template <typename U, typename... Us,
detail::tuple_implicitly_convertible_t<tuple, U, Us...> = 0>
constexpr KAT_HD tuple(U&& u, Us&&... us)
: impl_(make_index_sequence<sizeof...(Us) + 1>{}, detail::make_tuple_types_t<tuple>{}, std::forward<U>(u),
std::forward<Us>(us)...)
{
}
template <typename U, typename... Us,
detail::tuple_explicitly_convertible_t<tuple, U, Us...> = 0>
explicit constexpr KAT_HD tuple(U&& u, Us&&... us)
: impl_(make_index_sequence<sizeof...(Us) + 1>{}, detail::make_tuple_types_t<tuple>{}, std::forward<U>(u),
std::forward<Us>(us)...)
{
}
template <typename OtherTuple,
typename std::enable_if<detail::tuple_convertible<OtherTuple, tuple>::value, bool>::type = false>
KAT_HD tuple(OtherTuple&& t)
: impl_(std::forward<OtherTuple>(t))
{
}
template <typename OtherTuple,
typename std::enable_if<detail::tuple_assignable<tuple, OtherTuple>::value, bool>::type = false>
KAT_HD tuple& operator=(OtherTuple&& t)
{
impl_.operator=(std::forward<OtherTuple>(t));
return *this;
}
KAT_HD void swap(tuple& t) { impl_.swap(t.impl_); }
// TODO: Perhaps make this explicit?
operator std::tuple<T, Ts...>() const {
return detail::as_std_tuple(impl_);
}
private:
typedef detail::tuple_impl<kat::make_index_sequence<sizeof...(Ts) + 1>, T, Ts...> impl_type;
impl_type impl_;
template <size_t I, typename... Ts_>
friend KAT_HD tuple_element_t<I, tuple<Ts_...>>& get(tuple<Ts_...>& t);
template <size_t I, typename... Ts_>
friend KAT_HD const_tuple_element_t<I, tuple<Ts_...>>& get(const tuple<Ts_...>& t);
template <size_t I, typename... Ts_>
friend KAT_HD tuple_element_t<I, tuple<Ts_...>>&& get(tuple<Ts_...>&& t);
template <typename T_, typename... ts_>
friend KAT_HD T_& get(tuple<ts_...>& t);
template <typename T_, typename... ts_>
friend KAT_HD const T_& get(const tuple<ts_...>& t);
template <typename T_, typename... ts_>
friend KAT_HD T_&& get(tuple<ts_...>&& t);
};
// template specialization for an empty tuple
template <>
class tuple<>
{
public:
KAT_HD void swap(tuple&) {}
// TODO: Perhaps make this explicit?
operator std::tuple<>() const
{
return std::tuple<>();
}
};
template <size_t I, typename... Ts>
inline KAT_HD tuple_element_t<I, tuple<Ts...>>& get(tuple<Ts...>& t)
{
return get<I>(t.impl_);
}
template <size_t I, typename... Ts>
inline KAT_HD const_tuple_element_t<I, tuple<Ts...>>& get(const tuple<Ts...>& t)