-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathflaf.py
42 lines (39 loc) · 1.35 KB
/
flaf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright 2020 ewan xu<ewan_xu@outlook.com>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
""" Trigonometric Functional Link Adaptive Filter """
import numpy as np
def flaf(x, d, M=128, P=5, mu=0.2):
nIters = min(len(x),len(d)) - M
Q = P*2
u = np.zeros(M)
w = np.zeros((Q+1)*M)
e = np.zeros(nIters)
sk = np.zeros(P*M,dtype=np.int32)
ck = np.zeros(P*M,dtype=np.int32)
pk = np.tile(np.arange(P),M)
for k in range(M):
sk[k*P:(k+1)*P] = np.arange(1,Q,2) + k*(Q+1)
ck[k*P:(k+1)*P] = np.arange(2,Q+1,2) + k*(Q+1)
for n in range(nIters):
u[1:] = u[:-1]
u[0] = x[n]
g = np.repeat(u,Q+1)
g[sk] = np.sin(np.pi*pk*g[sk])
g[ck] = np.cos(np.pi*pk*g[ck])
y = np.dot(w, g.T)
e_n = d[n] - y
w = w + 2*mu*e_n*g/(np.dot(g,g)+1e-3)
e[n] = e_n
return e