|
| 1 | +# Copyright 2024 Swiss National Supercomputing Centre (CSCS/ETH Zurich) |
| 2 | +# ReFrame Project Developers. See the top-level LICENSE file for details. |
| 3 | +# |
| 4 | +# SPDX-License-Identifier: BSD-3-Clause |
| 5 | + |
| 6 | +import reframe as rfm |
| 7 | +import reframe.utility.sanity as sn |
| 8 | + |
| 9 | + |
| 10 | +@rfm.simple_test |
| 11 | +class CoralGemm(rfm.RunOnlyRegressionTest): |
| 12 | + valid_systems = ['+amdgpu'] |
| 13 | + valid_prog_environs = ['+rocm'] |
| 14 | + build_system = 'CMake' |
| 15 | + |
| 16 | + # Data precision for matrix A, B, C and computation |
| 17 | + precision_A = variable(str, value='R_64F') |
| 18 | + precision_B = variable(str, value='R_64F') |
| 19 | + precision_C = variable(str, value='R_64F') |
| 20 | + compute_precision = variable(str, value='R_64F') |
| 21 | + |
| 22 | + # Operation applied to matrix A and B, eg. OP_N, OP_T, OP_C |
| 23 | + op_A = variable(str, value='OP_N') |
| 24 | + op_B = variable(str, value='OP_T') |
| 25 | + |
| 26 | + # Matrix dimensions |
| 27 | + M = variable(int, value=9728) |
| 28 | + N = variable(int, value=6144) |
| 29 | + K = variable(int, value=8192) |
| 30 | + |
| 31 | + # Leading dimensions of matrix A, B, C |
| 32 | + lda = variable(int, value=9728) |
| 33 | + ldb = variable(int, value=6144) |
| 34 | + ldc = variable(int, value=9728) |
| 35 | + |
| 36 | + # Number of batched matrices |
| 37 | + batch_count = variable(int, value=10) |
| 38 | + |
| 39 | + # Duration to run the GEMM operation in seconds |
| 40 | + duration = variable(int, value=45) |
| 41 | + |
| 42 | + # Optional argument to run the extended version of the benchmark |
| 43 | + batched = variable(bool, value=False) |
| 44 | + strided = variable(bool, value=False) |
| 45 | + ex_api = variable(bool, value=False) |
| 46 | + hipBLASLt_api = variable(bool, value=False) |
| 47 | + |
| 48 | + # A, B, C matrices are stored in host memory |
| 49 | + host_A = variable(bool, value=False) |
| 50 | + host_B = variable(bool, value=False) |
| 51 | + host_C = variable(bool, value=False) |
| 52 | + |
| 53 | + # if in host memory, A/B/C is coherent (not cached) |
| 54 | + coherent_A = variable(bool, value=False) |
| 55 | + coherent_B = variable(bool, value=False) |
| 56 | + coherent_C = variable(bool, value=False) |
| 57 | + |
| 58 | + shared_A = variable(bool, value=False) |
| 59 | + shared_B = variable(bool, value=False) |
| 60 | + |
| 61 | + # set beta to zero |
| 62 | + zero_beta = variable(bool, value=False) |
| 63 | + |
| 64 | + sourcesdir = 'https://github.com/AMD-HPC/CoralGemm.git' |
| 65 | + num_tasks_per_node = 1 |
| 66 | + tags = {'benchmark'} |
| 67 | + |
| 68 | + @run_after('setup') |
| 69 | + def set_num_gpus(self): |
| 70 | + curr_part = self.current_partition |
| 71 | + self.num_gpus = curr_part.select_devices('gpu')[0].num_devices |
| 72 | + |
| 73 | + @run_before('run') |
| 74 | + def set_executable(self): |
| 75 | + # Set mandatory arguments of the benchmark |
| 76 | + self.executable = ( |
| 77 | + './gemm ' |
| 78 | + f'{self.precision_A} ' |
| 79 | + f'{self.precision_B} ' |
| 80 | + f'{self.precision_C} ' |
| 81 | + f'{self.compute_precision} ' |
| 82 | + f'{self.op_A} ' |
| 83 | + f'{self.op_B} ' |
| 84 | + f'{self.M} ' |
| 85 | + f'{self.N} ' |
| 86 | + f'{self.K} ' |
| 87 | + f'{self.lda} ' |
| 88 | + f'{self.ldb} ' |
| 89 | + f'{self.ldc} ' |
| 90 | + f'{self.batch_count} ' |
| 91 | + f'{self.duration}' |
| 92 | + ) |
| 93 | + |
| 94 | + # Set optional arguments of the benchmark |
| 95 | + if self.batched: |
| 96 | + self.executable += ' batched' |
| 97 | + |
| 98 | + if self.strided: |
| 99 | + self.executable += ' strided' |
| 100 | + |
| 101 | + if self.ex_api: |
| 102 | + self.executable += ' ex' |
| 103 | + |
| 104 | + if self.hipBLASLt_api: |
| 105 | + self.executable += ' lt' |
| 106 | + |
| 107 | + if self.host_A: |
| 108 | + self.executable += ' hostA' |
| 109 | + |
| 110 | + if self.host_B: |
| 111 | + self.executable += ' hostB' |
| 112 | + |
| 113 | + if self.host_C: |
| 114 | + self.executable += ' hostC' |
| 115 | + |
| 116 | + if self.coherent_A: |
| 117 | + self.executable += ' coherentA' |
| 118 | + |
| 119 | + if self.coherent_B: |
| 120 | + self.executable += ' coherentB' |
| 121 | + |
| 122 | + if self.coherent_C: |
| 123 | + self.executable += ' coherentC' |
| 124 | + |
| 125 | + if self.shared_A: |
| 126 | + self.executable += ' sharedA' |
| 127 | + |
| 128 | + if self.shared_B: |
| 129 | + self.executable += ' sharedB' |
| 130 | + |
| 131 | + if self.zero_beta: |
| 132 | + self.executable += ' zeroBeta' |
| 133 | + |
| 134 | + # Set the time limit with a padding of 2 minutes |
| 135 | + self.time_limit = self.duration + 120 |
| 136 | + |
| 137 | + @sanity_function |
| 138 | + def assert_results(self): |
| 139 | + # The binary automatically launches on all available GPUs |
| 140 | + # simultaneously, so we check that the output contains performance |
| 141 | + # results for all GPUs. |
| 142 | + s1 = sn.all([ |
| 143 | + sn.assert_found(rf'device_{i}_\[GFLOPS\]', self.stdout) for i in range(self.num_gpus) |
| 144 | + ]) |
| 145 | + |
| 146 | + # We also check that the output does not contain more GPUs than |
| 147 | + # the expected number. In case of misconfiguration, the node can |
| 148 | + # appear to have more GPUs than it actually has, with lower |
| 149 | + # performance. |
| 150 | + s2 = sn.assert_not_found(rf'device_{self.num_gpus+1}', self.stdout) |
| 151 | + |
| 152 | + return sn.all([s1, s2]) |
| 153 | + |
| 154 | + @performance_function('GFlops') |
| 155 | + def min_gflops(self): |
| 156 | + regex = r'^' |
| 157 | + # We get one column per GPU and one for the timestamp |
| 158 | + regex += ''.join(r'\s*(\d+.\d+)' for i in range(self.num_gpus + 1)) |
| 159 | + regex += r'\s*$' |
| 160 | + return sn.min( |
| 161 | + sn.min( |
| 162 | + sn.extractall(regex, self.stdout, i+1, float) |
| 163 | + ) for i in range(self.num_gpus) |
| 164 | + ) |
0 commit comments