-
Notifications
You must be signed in to change notification settings - Fork 14
/
3_1_blinn_phong_with_shadow.py
128 lines (113 loc) · 4.78 KB
/
3_1_blinn_phong_with_shadow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import taichi as ti
import numpy as np
import argparse
from ray_tracing_models import Ray, Camera, Hittable_list, Sphere, PI
ti.init(arch=ti.gpu)
# Canvas
aspect_ratio = 1.0
image_width = 800
image_height = int(image_width / aspect_ratio)
canvas = ti.Vector.field(3, dtype=ti.f32, shape=(image_width, image_height))
light_source = ti.Vector([0, 5.4 - 3.0, -1])
# Rendering parameters
samples_per_pixel = 4
@ti.func
def to_light_source(hit_point, light_source):
return light_source - hit_point
@ti.kernel
def render():
for i, j in canvas:
u = (i + ti.random()) / image_width
v = (j + ti.random()) / image_height
color = ti.Vector([0.0, 0.0, 0.0])
for n in range(samples_per_pixel):
ray = camera.get_ray(u, v)
color += ray_color(ray)
color /= samples_per_pixel
canvas[i, j] += color
@ti.func
def blinn_phong(ray_direction, hit_point, hit_point_normal, color, material):
# Compute the local color use Blinn-Phong model
hit_point_to_source = to_light_source(hit_point, light_source)
# Diffuse light
diffuse_color = color * ti.max(
hit_point_to_source.dot(hit_point_normal) / (
hit_point_to_source.norm() * hit_point_normal.norm()),
0.0)
specular_color = ti.Vector([0.0, 0.0, 0.0])
diffuse_weight = 1.0
specular_weight = 1.0
if material != 1:
# Specular light
H = (-(ray_direction.normalized()) + hit_point_to_source.normalized()).normalized()
N_dot_H = ti.max(H.dot(hit_point_normal.normalized()), 0.0)
intensity = ti.pow(N_dot_H, 10)
specular_color = intensity * color
# Fuzz metal ball
if material == 4:
diffuse_weight = 0.5
specular_weight = 0.5
# Add shadow
is_hit_source, hitted_dielectric_num, is_hitted_non_dielectric = scene.hit_shadow(
Ray(hit_point, hit_point_to_source))
shadow_weight = 1.0
if not is_hit_source:
if is_hitted_non_dielectric:
# Add hard shadow
shadow_weight = 0
elif hitted_dielectric_num > 0:
# Add soft shadow if the obstacles are dielectric
shadow_weight = ti.pow(0.5, hitted_dielectric_num)
return (diffuse_weight * diffuse_color + specular_weight * specular_color) * shadow_weight
# Blinn–Phong reflection model with shadow
@ti.func
def ray_color(ray):
color_buffer = ti.Vector([1.0, 1.0, 1.0])
curr_origin = ray.origin
curr_direction = ray.direction
is_hit, hit_point, hit_point_normal, front_face, material, color = scene.hit(Ray(curr_origin, curr_direction))
if is_hit:
if material == 0:
color_buffer = color
else:
color_buffer = blinn_phong(curr_direction, hit_point, hit_point_normal, color, material)
return color_buffer
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Naive Ray Tracing')
parser.add_argument(
'--max_depth', type=int, default=10, help='max depth (default: 10)')
parser.add_argument(
'--samples_per_pixel', type=int, default=4, help='samples_per_pixel (default: 4)')
args = parser.parse_args()
max_depth = args.max_depth
samples_per_pixel = args.samples_per_pixel
scene = Hittable_list()
# Light source
scene.add(Sphere(center=ti.Vector([0, 5.4, -1]), radius=3.0, material=0, color=ti.Vector([10.0, 10.0, 10.0])))
# Ground
scene.add(Sphere(center=ti.Vector([0, -100.5, -1]), radius=100.0, material=1, color=ti.Vector([0.8, 0.8, 0.8])))
# ceiling
scene.add(Sphere(center=ti.Vector([0, 102.5, -1]), radius=100.0, material=1, color=ti.Vector([0.8, 0.8, 0.8])))
# back wall
scene.add(Sphere(center=ti.Vector([0, 1, 101]), radius=100.0, material=1, color=ti.Vector([0.8, 0.8, 0.8])))
# right wall
scene.add(Sphere(center=ti.Vector([-101.5, 0, -1]), radius=100.0, material=1, color=ti.Vector([0.6, 0.0, 0.0])))
# left wall
scene.add(Sphere(center=ti.Vector([101.5, 0, -1]), radius=100.0, material=1, color=ti.Vector([0.0, 0.6, 0.0])))
# Diffuse ball
scene.add(Sphere(center=ti.Vector([0, -0.2, -1.5]), radius=0.3, material=1, color=ti.Vector([0.8, 0.3, 0.3])))
# Metal ball
scene.add(Sphere(center=ti.Vector([-0.8, 0.2, -1]), radius=0.7, material=2, color=ti.Vector([0.6, 0.8, 0.8])))
# Glass ball
scene.add(Sphere(center=ti.Vector([0.7, 0, -0.5]), radius=0.5, material=3, color=ti.Vector([1.0, 1.0, 1.0])))
# Metal ball-2, here 4 indicates a fuzz metal ball
scene.add(Sphere(center=ti.Vector([0.6, -0.3, -2.0]), radius=0.2, material=4, color=ti.Vector([0.8, 0.6, 0.2])))
camera = Camera()
gui = ti.GUI("Ray Tracing", res=(image_width, image_height))
canvas.fill(0)
cnt = 0
while gui.running:
render()
cnt += 1
gui.set_image(np.sqrt(canvas.to_numpy() / cnt))
gui.show()