-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
233 lines (163 loc) · 9.15 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# search.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""
In search.py, you will implement generic search algorithms which are called by
Pacman agents (in searchAgents.py).
"""
import util
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem.
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state.
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples, (successor,
action, stepCost), where 'successor' is a successor to the current
state, 'action' is the action required to get there, and 'stepCost' is
the incremental cost of expanding to that successor.
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions.
The sequence must be composed of legal moves.
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other maze, the
sequence of moves will be incorrect, so only use this for tinyMaze.
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s, s, w, s, w, w, s, w]
def depthFirstSearch(problem: SearchProblem):
"""
Search the deepest nodes in the search tree first.
Your search algorithm needs to return a list of actions that reaches the
goal. Make sure to implement a graph search algorithm.
To get started, you might want to try some of these simple commands to
understand the search problem that is being passed in:
print("Start:", problem.getStartState())
print("Is the start a goal?", problem.isGoalState(problem.getStartState()))
print("Start's successors:", problem.getSuccessors(problem.getStartState()))
"""
frontier = util.Stack() # Position, Path
explored = []
path = []
start_state = problem.getStartState() # Starting State
if problem.isGoalState(start_state): # If the goal is the starting state
return path # Return []
frontier.push((start_state, path)) # Push to frontier start state and path=[]
while(frontier.isEmpty() != True): # While frontier is not empty
position,path = frontier.pop() # Get position and path from frontier
explored.append(position) # Check position as explored, appending it to explored list
if problem.isGoalState(position): # If position is the goal, return path
return path
child = problem.getSuccessors(position) # Get child, (succesor, action, stepCost)
for node in child: # If there is a child, for each one, check if it hasnt been explored yet and push the new path in frontier
if node[0] not in explored:
newPath = path + [node[1]]
frontier.push((node[0], newPath))
util.raiseNotDefined()
def breadthFirstSearch(problem: SearchProblem):
"""Search the shallowest nodes in the search tree first."""
frontier = util.Queue() # Position, Path
explored = []
path = []
start_state = problem.getStartState() # Starting State
if problem.isGoalState(start_state): # If the goal is the starting state
return path # Return []
frontier.push((start_state, path)) # Push to frontier start state and path=[]
while(frontier.isEmpty() != True): # While frontier is not empty
position, path = frontier.pop() # Get position and path from frontier
explored.append(position) # Check position as explored, append it to explored list
if problem.isGoalState(position): # If position is the goal, return path
return path
child = problem.getSuccessors(position) # Get child, (succesor, action, stepCost)
frontier_state = [state[0] for state in frontier.list]
for node in child: # If there is a child, for each one, check if it hasnt been explored yet and push the new path in frontier
if node[0] not in explored and node[0] not in frontier_state:
newPath = path + [node[1]]
frontier.push((node[0], newPath))
util.raiseNotDefined()
def uniformCostSearch(problem: SearchProblem):
"""Search the node of least total cost first."""
frontier = util.PriorityQueue()
explored = []
path = []
start_state = problem.getStartState() # Starting State
if problem.isGoalState(start_state): # If the goal is the starting state
return path # Return []
frontier.push((start_state, [], 0), 0) # Push to frontier (starting state/position, path, cost), newCost/priority
while (frontier.isEmpty != True): # While frontier is not empty
position, path, cost = frontier.pop() # Get position, path and cost from frontier
if position not in explored: # If the position has no been explored yet
explored.append(position) # Append it to explored list
if problem.isGoalState(position): # If position is the goal, return path
return path
child = problem.getSuccessors(position) # Get child, (succesor, action, stepCost)
for node in child:
newPath = path + [node[1]] # node[1] is the path of successor
newCost = cost + node[2] # node[2] is the cost of successor
frontier.push((node[0], newPath, newCost), newCost) # node[0] is the position of successor
util.raiseNotDefined()
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem: SearchProblem, heuristic=nullHeuristic):
"""Search the node that has the lowest combined cost and heuristic first."""
frontier = util.PriorityQueue()
explored = []
path = []
start_state = problem.getStartState() # Starting State
if problem.isGoalState(start_state): # If the goal is the starting state
return path # Return []
frontier.push((start_state, [], 0), 0) # Push to frontier (starting state/position, path, cost), newCost/priority
while (frontier.isEmpty != True): # While frontier is not empty
position, path, cost = frontier.pop() # Get position, path and cost from frontier
if position not in explored: # If position has no been explored yet
explored.append(position) # Append it to explored list
if problem.isGoalState(position): # If position is the goal, return path
return path
child = problem.getSuccessors(position) # Get child, (succesor, action, stepCost)
for node in child:
newPath = path + [node[1]] # node[1] is the path of successor
newCost = cost + node[2] # node[2] is the cost of successor
h = newCost + heuristic(node[0], problem)
frontier.push((node[0], newPath, newCost), h) # node[0] is the position of successor
util.raiseNotDefined()
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch