Ray Streaming is a streaming data processing framework built on ray. It will be helpful for you to build jobs dealing with real-time data.
- Cross Language. Based on Ray's multi-language actor, Ray Streaming can also run in multiple languages(only Python and Java is supported currently) with high efficiency. You can implement your operator in different languages and run them in one job.
- Single Node Failover. We designed a special failover mechanism that only needs to rollback the failed node it's own, in most cases, to recover the job. This will be a huge benefit if your job is sensitive about failure recovery time. In other frameworks like Flink, instead, the entire job should be restarted once a node has failure.
import ray
from ray.streaming import StreamingContext
ctx = StreamingContext.Builder() \
.build()
ctx.read_text_file(__file__) \
.set_parallelism(1) \
.flat_map(lambda x: x.split()) \
.map(lambda x: (x, 1)) \
.key_by(lambda x: x[0]) \
.reduce(lambda old_value, new_value:
(old_value[0], old_value[1] + new_value[1])) \
.filter(lambda x: "ray" not in x) \
.sink(lambda x: print("result", x))
ctx.submit("word_count")
StreamingContext context = StreamingContext.buildContext();
List<String> text = Collections.singletonList("hello world");
DataStreamSource.fromCollection(context, text)
.flatMap((FlatMapFunction<String, WordAndCount>) (value, collector) -> {
String[] records = value.split(" ");
for (String record : records) {
collector.collect(new WordAndCount(record, 1));
}
})
.filter(pair -> !pair.word.contains("world"))
.keyBy(pair -> pair.word)
.reduce((oldValue, newValue) ->
new WordAndCount(oldValue.word, oldValue.count + newValue.count))
.sink(result -> System.out.println("sink result=" + result));
context.execute("testWordCount");
import ray
from ray.streaming import StreamingContext
ctx = StreamingContext.Builder().build()
ctx.from_values("a", "b", "c") \
.as_java_stream() \
.map("io.ray.streaming.runtime.demo.HybridStreamTest$Mapper1") \
.filter("io.ray.streaming.runtime.demo.HybridStreamTest$Filter1") \
.as_python_stream() \
.sink(lambda x: print("result", x))
ctx.submit("HybridStreamTest")
StreamingContext context = StreamingContext.buildContext();
DataStreamSource<String> streamSource =
DataStreamSource.fromCollection(context, Arrays.asList("a", "b", "c"));
streamSource
.map(x -> x + x)
.asPythonStream()
.map("ray.streaming.tests.test_hybrid_stream", "map_func1")
.filter("ray.streaming.tests.test_hybrid_stream", "filter_func1")
.asJavaStream()
.sink(value -> System.out.println("HybridStream sink=" + value));
context.execute("HybridStreamTestJob");
Ray Streaming is packaged together with Ray, install Ray with: pip install ray
,
this wheel contains all dependencies your need to run Python streaming, including Java operators supporting.
Import Ray Streaming using maven:
<dependency>
<artifactId>ray-api</artifactId>
<groupId>io.ray</groupId>
<version>1.0.1</version>
</dependency>
<dependency>
<artifactId>ray-runtime</artifactId>
<groupId>io.ray</groupId>
<version>1.0.1</version>
</dependency>
<dependency>
<artifactId>streaming-api</artifactId>
<groupId>io.ray</groupId>
<version>1.0.1</version>
</dependency>
<dependency>
<artifactId>streaming-runtime</artifactId>
<groupId>io.ray</groupId>
<version>1.0.1</version>
</dependency>
Ray Streaming is built on Ray. We use Ray's actor to run everything, and use Ray's direct call for communication.
There are two main types of actor: job master and job worker.
When you execute context.submit()
in your driver, we'll first create a job master, then job master will create all job workers needed to run your operator. Then job master will be responsible to coordinate all workers, including checkpoint, failover, etc.
Check Ray Streaming Proposal to get more detailed information about the overall design.
As mentioned above, different from other frameworks, We designed a special failover mechanism that only needs to rollback the failed node it's own, in most cases, to recover the job. The main idea to achieve this feature is saving messages for each node, and replay them from upstream when node has failure.
Check Fault Tolerance Proposal for more detailed information about our fault tolerance mechanism.
Build streaming java
- build ray
bazel build //java:gen_maven_deps
cd java && mvn clean install -Dmaven.test.skip=true && cd ..
- build streaming
bazel build //streaming/java:gen_maven_deps
mvn clean install -Dmaven.test.skip=true
- build ray
Build ray python will build ray streaming python.
Run examples
# c++ test cd streaming/ && bazel test ... sh src/test/run_streaming_queue_test.sh cd .. # python test pushd python/ray/streaming/ pushd examples python simple.py --input-file toy.txt popd pushd tests pytest . popd popd # java test cd streaming/java/streaming-runtime mvn test
- Ray Streaming implementation plan
- Fault Tolerance Proposal
- Data Transfer Proposal
- Ray Streaming Proposal
- Open Source Plan
- Community Slack: Join our Slack workspace.
- GitHub Discussions: For discussions about development, questions about usage, and feature requests.
- GitHub Issues: For reporting bugs.