-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathrecsplit.go
781 lines (726 loc) · 27.6 KB
/
recsplit.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
// Copyright 2021 The Erigon Authors
// This file is part of Erigon.
//
// Erigon is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Erigon is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with Erigon. If not, see <http://www.gnu.org/licenses/>.
package recsplit
import (
"bufio"
"context"
"crypto/rand"
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"math/bits"
"os"
"path/filepath"
"github.com/c2h5oh/datasize"
"github.com/spaolacci/murmur3"
"github.com/erigontech/erigon-lib/common"
"github.com/erigontech/erigon-lib/common/assert"
"github.com/erigontech/erigon-lib/etl"
"github.com/erigontech/erigon-lib/log/v3"
"github.com/erigontech/erigon-lib/recsplit/eliasfano16"
"github.com/erigontech/erigon-lib/recsplit/eliasfano32"
)
var ErrCollision = errors.New("duplicate key")
const RecSplitLogPrefix = "recsplit"
const MaxLeafSize = 24
/** David Stafford's (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
* 13th variant of the 64-bit finalizer function in Austin Appleby's
* MurmurHash3 (https://github.com/aappleby/smhasher).
*
* @param z a 64-bit integer.
* @return a 64-bit integer obtained by mixing the bits of `z`.
*/
func remix(z uint64) uint64 {
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
return z ^ (z >> 31)
}
// RecSplit is the implementation of Recursive Split algorithm for constructing perfect hash mapping, described in
// https://arxiv.org/pdf/1910.06416.pdf Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna.
// Recsplit: Minimal perfect hashing via recursive splitting. In 2020 Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX),
// pages 175−185. SIAM, 2020.
type RecSplit struct {
offsetCollector *etl.Collector // Collector that sorts by offsets
indexW *bufio.Writer
indexF *os.File
offsetEf *eliasfano32.EliasFano // Elias Fano instance for encoding the offsets
bucketCollector *etl.Collector // Collector that sorts by buckets
existenceF *os.File
existenceW *bufio.Writer
indexFileName string
indexFile, tmpFilePath string
tmpDir string
gr GolombRice // Helper object to encode the tree of hash function salts using Golomb-Rice code.
bucketPosAcc []uint64 // Accumulator for position of every bucket in the encoding of the hash function
startSeed []uint64
count []uint16
currentBucket []uint64 // 64-bit fingerprints of keys in the current bucket accumulated before the recsplit is performed for that bucket
currentBucketOffs []uint64 // Index offsets for the current bucket
offsetBuffer []uint64
buffer []uint64
golombRice []uint32
bucketSizeAcc []uint64 // Bucket size accumulator
// Helper object to encode the sequence of cumulative number of keys in the buckets
// and the sequence of cumulative bit offsets of buckets in the Golomb-Rice code.
ef eliasfano16.DoubleEliasFano
lvl log.Lvl
bytesPerRec int
minDelta uint64 // minDelta for Elias Fano encoding of "enum -> offset" index
prevOffset uint64 // Previously added offset (for calculating minDelta for Elias Fano encoding of "enum -> offset" index)
bucketSize int
keyExpectedCount uint64 // Number of keys in the hash table
keysAdded uint64 // Number of keys actually added to the recSplit (to check the match with keyExpectedCount)
maxOffset uint64 // Maximum value of index offset to later decide how many bytes to use for the encoding
currentBucketIdx uint64 // Current bucket being accumulated
baseDataID uint64 // Minimal app-specific ID of entries of this index - helps app understand what data stored in given shard - persistent field
bucketCount uint64 // Number of buckets
etlBufLimit datasize.ByteSize
salt uint32 // Murmur3 hash used for converting keys to 64-bit values and assigning to buckets
leafSize uint16 // Leaf size for recursive split algorithm
secondaryAggrBound uint16 // The lower bound for secondary key aggregation (computed from leadSize)
primaryAggrBound uint16 // The lower bound for primary key aggregation (computed from leafSize)
bucketKeyBuf [16]byte
numBuf [8]byte
collision bool
enums bool // Whether to build two level index with perfect hash table pointing to enumeration and enumeration pointing to offsets
lessFalsePositives bool
built bool // Flag indicating that the hash function has been built and no more keys can be added
trace bool
logger log.Logger
noFsync bool // fsync is enabled by default, but tests can manually disable
}
type RecSplitArgs struct {
// Whether two level index needs to be built, where perfect hash map points to an enumeration, and enumeration points to offsets
// if Enum=false: can have unsorted and duplicated values
// if Enum=true: must have sorted values (can have duplicates) - monotonically growing sequence
Enums bool
LessFalsePositives bool
IndexFile string // File name where the index and the minimal perfect hash function will be written to
TmpDir string
StartSeed []uint64 // For each level of recursive split, the hash seed (salt) used for that level - need to be generated randomly and be large enough to accomodate all the levels
KeyCount int
BucketSize int
BaseDataID uint64
EtlBufLimit datasize.ByteSize
Salt *uint32 // Hash seed (salt) for the hash function used for allocating the initial buckets - need to be generated randomly
LeafSize uint16
NoFsync bool // fsync is enabled by default, but tests can manually disable
}
// NewRecSplit creates a new RecSplit instance with given number of keys and given bucket size
// Typical bucket size is 100 - 2000, larger bucket sizes result in smaller representations of hash functions, at a cost of slower access
// salt parameters is used to randomise the hash function construction, to ensure that different Erigon instances (nodes)
// are likely to use different hash function, to collision attacks are unlikely to slow down any meaningful number of nodes at the same time
func NewRecSplit(args RecSplitArgs, logger log.Logger) (*RecSplit, error) {
bucketCount := (args.KeyCount + args.BucketSize - 1) / args.BucketSize
rs := &RecSplit{bucketSize: args.BucketSize, keyExpectedCount: uint64(args.KeyCount), bucketCount: uint64(bucketCount), lvl: log.LvlDebug, logger: logger}
if len(args.StartSeed) == 0 {
args.StartSeed = []uint64{0x106393c187cae21a, 0x6453cec3f7376937, 0x643e521ddbd2be98, 0x3740c6412f6572cb, 0x717d47562f1ce470, 0x4cd6eb4c63befb7c, 0x9bfd8c5e18c8da73,
0x082f20e10092a9a3, 0x2ada2ce68d21defc, 0xe33cb4f3e7c6466b, 0x3980be458c509c59, 0xc466fd9584828e8c, 0x45f0aabe1a61ede6, 0xf6e7b8b33ad9b98d,
0x4ef95e25f4b4983d, 0x81175195173b92d3, 0x4e50927d8dd15978, 0x1ea2099d1fafae7f, 0x425c8a06fbaaa815, 0xcd4216006c74052a}
}
rs.tmpDir = args.TmpDir
rs.indexFile = args.IndexFile
rs.tmpFilePath = args.IndexFile + ".tmp"
_, fname := filepath.Split(rs.indexFile)
rs.indexFileName = fname
rs.baseDataID = args.BaseDataID
if args.Salt == nil {
seedBytes := make([]byte, 4)
if _, err := rand.Read(seedBytes); err != nil {
return nil, err
}
rs.salt = binary.BigEndian.Uint32(seedBytes)
} else {
rs.salt = *args.Salt
}
rs.etlBufLimit = args.EtlBufLimit
if rs.etlBufLimit == 0 {
// reduce ram pressure, because:
// - indexing done in background or in many workers (building many indices in-parallel)
// - `recsplit` has 2 etl collectors
// - `rescplit` building is cpu-intencive and bottleneck is not in etl loading
rs.etlBufLimit = etl.BufferOptimalSize / 4
}
rs.bucketCollector = etl.NewCollector(RecSplitLogPrefix+" "+fname, rs.tmpDir, etl.NewSortableBuffer(rs.etlBufLimit), logger)
rs.bucketCollector.LogLvl(log.LvlDebug)
rs.enums = args.Enums
if args.Enums {
rs.offsetCollector = etl.NewCollector(RecSplitLogPrefix+" "+fname, rs.tmpDir, etl.NewSortableBuffer(rs.etlBufLimit), logger)
rs.offsetCollector.LogLvl(log.LvlDebug)
}
rs.lessFalsePositives = args.LessFalsePositives
if rs.enums && args.KeyCount > 0 && rs.lessFalsePositives {
bufferFile, err := os.CreateTemp(rs.tmpDir, "erigon-lfp-buf-")
if err != nil {
return nil, err
}
rs.existenceF = bufferFile
rs.existenceW = bufio.NewWriter(rs.existenceF)
}
rs.currentBucket = make([]uint64, 0, args.BucketSize)
rs.currentBucketOffs = make([]uint64, 0, args.BucketSize)
rs.maxOffset = 0
rs.bucketSizeAcc = make([]uint64, 1, bucketCount+1)
rs.bucketPosAcc = make([]uint64, 1, bucketCount+1)
if args.LeafSize > MaxLeafSize {
return nil, fmt.Errorf("exceeded max leaf size %d: %d", MaxLeafSize, args.LeafSize)
}
rs.leafSize = args.LeafSize
rs.primaryAggrBound = rs.leafSize * uint16(math.Max(2, math.Ceil(0.35*float64(rs.leafSize)+1./2.)))
if rs.leafSize < 7 {
rs.secondaryAggrBound = rs.primaryAggrBound * 2
} else {
rs.secondaryAggrBound = rs.primaryAggrBound * uint16(math.Ceil(0.21*float64(rs.leafSize)+9./10.))
}
rs.startSeed = args.StartSeed
rs.count = make([]uint16, rs.secondaryAggrBound)
if args.NoFsync {
rs.DisableFsync()
}
return rs, nil
}
func (rs *RecSplit) Salt() uint32 { return rs.salt }
func (rs *RecSplit) Close() {
if rs.indexF != nil {
rs.indexF.Close()
}
if rs.existenceF != nil {
rs.existenceF.Close()
}
if rs.bucketCollector != nil {
rs.bucketCollector.Close()
}
if rs.offsetCollector != nil {
rs.offsetCollector.Close()
}
}
func (rs *RecSplit) LogLvl(lvl log.Lvl) { rs.lvl = lvl }
func (rs *RecSplit) SetTrace(trace bool) {
rs.trace = trace
}
// remap converts the number x which is assumed to be uniformly distributed over the range [0..2^64) to the number that is uniformly
// distributed over the range [0..n)
func remap(x uint64, n uint64) (hi uint64) {
hi, _ = bits.Mul64(x, n)
return hi
}
const mask48 uint64 = (1 << 48) - 1
// remap converts the number x which is assumed to be uniformly distributed over the range [0..2^64) to the number that is uniformly
// distributed over the range [0..n), under assumption that n is less than 2^16
func remap16(x uint64, n uint16) uint16 {
return uint16(((x & mask48) * uint64(n)) >> 48)
}
// ResetNextSalt resets the RecSplit and uses the next salt value to try to avoid collisions
// when mapping keys to 64-bit values
func (rs *RecSplit) ResetNextSalt() {
rs.built = false
rs.collision = false
rs.keysAdded = 0
rs.salt++
if rs.bucketCollector != nil {
rs.bucketCollector.Close()
}
rs.bucketCollector = etl.NewCollector(RecSplitLogPrefix+" "+rs.indexFileName, rs.tmpDir, etl.NewSortableBuffer(rs.etlBufLimit), rs.logger)
if rs.offsetCollector != nil {
rs.offsetCollector.Close()
rs.offsetCollector = etl.NewCollector(RecSplitLogPrefix+" "+rs.indexFileName, rs.tmpDir, etl.NewSortableBuffer(rs.etlBufLimit), rs.logger)
}
rs.currentBucket = rs.currentBucket[:0]
rs.currentBucketOffs = rs.currentBucketOffs[:0]
rs.maxOffset = 0
rs.bucketSizeAcc = rs.bucketSizeAcc[:1] // First entry is always zero
rs.bucketPosAcc = rs.bucketPosAcc[:1] // First entry is always zero
}
func splitParams(m, leafSize, primaryAggrBound, secondaryAggrBound uint16) (fanout, unit uint16) {
if m > secondaryAggrBound { // High-level aggregation (fanout 2)
unit = secondaryAggrBound * (((m+1)/2 + secondaryAggrBound - 1) / secondaryAggrBound)
fanout = 2
} else if m > primaryAggrBound { // Second-level aggregation
unit = primaryAggrBound
fanout = (m + primaryAggrBound - 1) / primaryAggrBound
} else { // First-level aggregation
unit = leafSize
fanout = (m + leafSize - 1) / leafSize
}
return
}
var golombBaseLog2 = -math.Log((math.Sqrt(5) + 1.0) / 2.0)
func computeGolombRice(m uint16, table []uint32, leafSize, primaryAggrBound, secondaryAggrBound uint16) {
fanout, unit := splitParams(m, leafSize, primaryAggrBound, secondaryAggrBound)
k := make([]uint16, fanout)
k[fanout-1] = m
for i := uint16(0); i < fanout-1; i++ {
k[i] = unit
k[fanout-1] -= k[i]
}
sqrtProd := float64(1)
for i := uint16(0); i < fanout; i++ {
sqrtProd *= math.Sqrt(float64(k[i]))
}
p := math.Sqrt(float64(m)) / (math.Pow(2*math.Pi, (float64(fanout)-1.)/2.0) * sqrtProd)
golombRiceLength := uint32(math.Ceil(math.Log2(golombBaseLog2 / math.Log1p(-p)))) // log2 Golomb modulus
if golombRiceLength > 0x1F {
panic("golombRiceLength > 0x1F")
}
table[m] = golombRiceLength << 27
for i := uint16(0); i < fanout; i++ {
golombRiceLength += table[k[i]] & 0xFFFF
}
if golombRiceLength > 0xFFFF {
panic("golombRiceLength > 0xFFFF")
}
table[m] |= golombRiceLength // Sum of Golomb-Rice codeslengths in the subtree, stored in the lower 16 bits
nodes := uint32(1)
for i := uint16(0); i < fanout; i++ {
nodes += (table[k[i]] >> 16) & 0x7FF
}
if leafSize >= 3 && nodes > 0x7FF {
panic("rs.leafSize >= 3 && nodes > 0x7FF")
}
table[m] |= nodes << 16
}
// golombParam returns the optimal Golomb parameter to use for encoding
// salt for the part of the hash function separating m elements. It is based on
// calculations with assumptions that we draw hash functions at random
func (rs *RecSplit) golombParam(m uint16) int {
for s := uint16(len(rs.golombRice)); m >= s; s++ {
rs.golombRice = append(rs.golombRice, 0)
// For the case where bucket is larger than planned
if s == 0 {
rs.golombRice[0] = (bijMemo[0] << 27) | bijMemo[0]
} else if s <= rs.leafSize {
rs.golombRice[s] = (bijMemo[s] << 27) | (uint32(1) << 16) | bijMemo[s]
} else {
computeGolombRice(s, rs.golombRice, rs.leafSize, rs.primaryAggrBound, rs.secondaryAggrBound)
}
}
return int(rs.golombRice[m] >> 27)
}
// Add key to the RecSplit. There can be many more keys than what fits in RAM, and RecSplit
// spills data onto disk to accomodate that. The key gets copied by the collector, therefore
// the slice underlying key is not getting accessed by RecSplit after this invocation.
func (rs *RecSplit) AddKey(key []byte, offset uint64) error {
if rs.built {
return errors.New("cannot add keys after perfect hash function had been built")
}
hi, lo := murmur3.Sum128WithSeed(key, rs.salt)
binary.BigEndian.PutUint64(rs.bucketKeyBuf[:], remap(hi, rs.bucketCount))
binary.BigEndian.PutUint64(rs.bucketKeyBuf[8:], lo)
binary.BigEndian.PutUint64(rs.numBuf[:], offset)
if offset > rs.maxOffset {
rs.maxOffset = offset
}
if rs.keysAdded > 0 {
delta := offset - rs.prevOffset
if rs.keysAdded == 1 || delta < rs.minDelta {
rs.minDelta = delta
}
}
if rs.enums {
if err := rs.offsetCollector.Collect(rs.numBuf[:], nil); err != nil {
return err
}
binary.BigEndian.PutUint64(rs.numBuf[:], rs.keysAdded)
if err := rs.bucketCollector.Collect(rs.bucketKeyBuf[:], rs.numBuf[:]); err != nil {
return err
}
if rs.lessFalsePositives {
//1 byte from each hashed key
if err := rs.existenceW.WriteByte(byte(hi)); err != nil {
return err
}
}
} else {
if err := rs.bucketCollector.Collect(rs.bucketKeyBuf[:], rs.numBuf[:]); err != nil {
return err
}
}
rs.keysAdded++
rs.prevOffset = offset
return nil
}
func (rs *RecSplit) AddOffset(offset uint64) error {
if rs.enums {
binary.BigEndian.PutUint64(rs.numBuf[:], offset)
if err := rs.offsetCollector.Collect(rs.numBuf[:], nil); err != nil {
return err
}
}
return nil
}
func (rs *RecSplit) recsplitCurrentBucket() error {
// Extend rs.bucketSizeAcc to accomodate current bucket index + 1
for len(rs.bucketSizeAcc) <= int(rs.currentBucketIdx)+1 {
rs.bucketSizeAcc = append(rs.bucketSizeAcc, rs.bucketSizeAcc[len(rs.bucketSizeAcc)-1])
}
rs.bucketSizeAcc[int(rs.currentBucketIdx)+1] += uint64(len(rs.currentBucket))
// Sets of size 0 and 1 are not further processed, just write them to index
if len(rs.currentBucket) > 1 {
for i, key := range rs.currentBucket[1:] {
if key == rs.currentBucket[i] {
rs.collision = true
return fmt.Errorf("%w: %x", ErrCollision, key)
}
}
bitPos := rs.gr.bitCount
if rs.buffer == nil {
rs.buffer = make([]uint64, len(rs.currentBucket))
rs.offsetBuffer = make([]uint64, len(rs.currentBucketOffs))
} else {
for len(rs.buffer) < len(rs.currentBucket) {
rs.buffer = append(rs.buffer, 0)
rs.offsetBuffer = append(rs.offsetBuffer, 0)
}
}
unary, err := rs.recsplit(0 /* level */, rs.currentBucket, rs.currentBucketOffs, nil /* unary */)
if err != nil {
return err
}
rs.gr.appendUnaryAll(unary)
if rs.trace {
fmt.Printf("recsplitBucket(%d, %d, bitsize = %d)\n", rs.currentBucketIdx, len(rs.currentBucket), rs.gr.bitCount-bitPos)
}
} else {
for _, offset := range rs.currentBucketOffs {
binary.BigEndian.PutUint64(rs.numBuf[:], offset)
if _, err := rs.indexW.Write(rs.numBuf[8-rs.bytesPerRec:]); err != nil {
return err
}
}
}
// Extend rs.bucketPosAcc to accomodate current bucket index + 1
for len(rs.bucketPosAcc) <= int(rs.currentBucketIdx)+1 {
rs.bucketPosAcc = append(rs.bucketPosAcc, rs.bucketPosAcc[len(rs.bucketPosAcc)-1])
}
rs.bucketPosAcc[int(rs.currentBucketIdx)+1] = uint64(rs.gr.Bits())
// clear for the next buckey
rs.currentBucket = rs.currentBucket[:0]
rs.currentBucketOffs = rs.currentBucketOffs[:0]
return nil
}
// recsplit applies recSplit algorithm to the given bucket
func (rs *RecSplit) recsplit(level int, bucket []uint64, offsets []uint64, unary []uint64) ([]uint64, error) {
if rs.trace {
fmt.Printf("recsplit(%d, %d, %x)\n", level, len(bucket), bucket)
}
// Pick initial salt for this level of recursive split
salt := rs.startSeed[level]
m := uint16(len(bucket))
if m <= rs.leafSize {
// No need to build aggregation levels - just find bijection
var mask uint32
for {
mask = 0
var fail bool
for i := uint16(0); !fail && i < m; i++ {
bit := uint32(1) << remap16(remix(bucket[i]+salt), m)
if mask&bit != 0 {
fail = true
} else {
mask |= bit
}
}
if !fail {
break
}
salt++
}
for i := uint16(0); i < m; i++ {
j := remap16(remix(bucket[i]+salt), m)
rs.offsetBuffer[j] = offsets[i]
}
for _, offset := range rs.offsetBuffer[:m] {
binary.BigEndian.PutUint64(rs.numBuf[:], offset)
if _, err := rs.indexW.Write(rs.numBuf[8-rs.bytesPerRec:]); err != nil {
return nil, err
}
}
salt -= rs.startSeed[level]
log2golomb := rs.golombParam(m)
if rs.trace {
fmt.Printf("encode bij %d with log2golomn %d at p = %d\n", salt, log2golomb, rs.gr.bitCount)
}
rs.gr.appendFixed(salt, log2golomb)
unary = append(unary, salt>>log2golomb)
} else {
fanout, unit := splitParams(m, rs.leafSize, rs.primaryAggrBound, rs.secondaryAggrBound)
count := rs.count
for {
for i := uint16(0); i < fanout-1; i++ {
count[i] = 0
}
var fail bool
for i := uint16(0); i < m; i++ {
count[remap16(remix(bucket[i]+salt), m)/unit]++
}
for i := uint16(0); i < fanout-1; i++ {
fail = fail || (count[i] != unit)
}
if !fail {
break
}
salt++
}
for i, c := uint16(0), uint16(0); i < fanout; i++ {
count[i] = c
c += unit
}
for i := uint16(0); i < m; i++ {
j := remap16(remix(bucket[i]+salt), m) / unit
rs.buffer[count[j]] = bucket[i]
rs.offsetBuffer[count[j]] = offsets[i]
count[j]++
}
copy(bucket, rs.buffer)
copy(offsets, rs.offsetBuffer)
salt -= rs.startSeed[level]
log2golomb := rs.golombParam(m)
if rs.trace {
fmt.Printf("encode fanout %d: %d with log2golomn %d at p = %d\n", fanout, salt, log2golomb, rs.gr.bitCount)
}
rs.gr.appendFixed(salt, log2golomb)
unary = append(unary, salt>>log2golomb)
var err error
var i uint16
for i = 0; i < m-unit; i += unit {
if unary, err = rs.recsplit(level+1, bucket[i:i+unit], offsets[i:i+unit], unary); err != nil {
return nil, err
}
}
if m-i > 1 {
if unary, err = rs.recsplit(level+1, bucket[i:], offsets[i:], unary); err != nil {
return nil, err
}
} else if m-i == 1 {
binary.BigEndian.PutUint64(rs.numBuf[:], offsets[i])
if _, err := rs.indexW.Write(rs.numBuf[8-rs.bytesPerRec:]); err != nil {
return nil, err
}
}
}
return unary, nil
}
// loadFuncBucket is required to satisfy the type etl.LoadFunc type, to use with collector.Load
func (rs *RecSplit) loadFuncBucket(k, v []byte, _ etl.CurrentTableReader, _ etl.LoadNextFunc) error {
// k is the BigEndian encoding of the bucket number, and the v is the key that is assigned into that bucket
bucketIdx := binary.BigEndian.Uint64(k)
if rs.currentBucketIdx != bucketIdx {
if rs.currentBucketIdx != math.MaxUint64 {
if err := rs.recsplitCurrentBucket(); err != nil {
return err
}
}
rs.currentBucketIdx = bucketIdx
}
rs.currentBucket = append(rs.currentBucket, binary.BigEndian.Uint64(k[8:]))
rs.currentBucketOffs = append(rs.currentBucketOffs, binary.BigEndian.Uint64(v))
return nil
}
func (rs *RecSplit) loadFuncOffset(k, _ []byte, _ etl.CurrentTableReader, _ etl.LoadNextFunc) error {
offset := binary.BigEndian.Uint64(k)
rs.offsetEf.AddOffset(offset)
return nil
}
// Build has to be called after all the keys have been added, and it initiates the process
// of building the perfect hash function and writing index into a file
func (rs *RecSplit) Build(ctx context.Context) error {
if rs.built {
return errors.New("already built")
}
if rs.keysAdded != rs.keyExpectedCount {
return fmt.Errorf("rs %s expected keys %d, got %d", rs.indexFileName, rs.keyExpectedCount, rs.keysAdded)
}
var err error
if rs.indexF, err = os.Create(rs.tmpFilePath); err != nil {
return fmt.Errorf("create index file %s: %w", rs.indexFile, err)
}
rs.logger.Debug("[index] created", "file", rs.tmpFilePath)
defer rs.indexF.Close()
rs.indexW = bufio.NewWriterSize(rs.indexF, etl.BufIOSize)
// Write minimal app-specific dataID in this index file
binary.BigEndian.PutUint64(rs.numBuf[:], rs.baseDataID)
if _, err = rs.indexW.Write(rs.numBuf[:]); err != nil {
return fmt.Errorf("write number of keys: %w", err)
}
// Write number of keys
binary.BigEndian.PutUint64(rs.numBuf[:], rs.keysAdded)
if _, err = rs.indexW.Write(rs.numBuf[:]); err != nil {
return fmt.Errorf("write number of keys: %w", err)
}
// Write number of bytes per index record
rs.bytesPerRec = common.BitLenToByteLen(bits.Len64(rs.maxOffset))
if err = rs.indexW.WriteByte(byte(rs.bytesPerRec)); err != nil {
return fmt.Errorf("write bytes per record: %w", err)
}
rs.currentBucketIdx = math.MaxUint64 // To make sure 0 bucket is detected
defer rs.bucketCollector.Close()
if rs.lvl < log.LvlTrace {
log.Log(rs.lvl, "[index] calculating", "file", rs.indexFileName)
}
if err := rs.bucketCollector.Load(nil, "", rs.loadFuncBucket, etl.TransformArgs{Quit: ctx.Done()}); err != nil {
return err
}
if len(rs.currentBucket) > 0 {
if err := rs.recsplitCurrentBucket(); err != nil {
return err
}
}
if assert.Enable {
rs.indexW.Flush()
rs.indexF.Seek(0, 0)
b, _ := io.ReadAll(rs.indexF)
if len(b) != 9+int(rs.keysAdded)*rs.bytesPerRec {
panic(fmt.Errorf("expected: %d, got: %d; rs.keysAdded=%d, rs.bytesPerRec=%d, %s", 9+int(rs.keysAdded)*rs.bytesPerRec, len(b), rs.keysAdded, rs.bytesPerRec, rs.indexFile))
}
}
if rs.lvl < log.LvlTrace {
log.Log(rs.lvl, "[index] write", "file", rs.indexFileName)
}
if rs.enums && rs.keysAdded > 0 {
rs.offsetEf = eliasfano32.NewEliasFano(rs.keysAdded, rs.maxOffset)
defer rs.offsetCollector.Close()
if err := rs.offsetCollector.Load(nil, "", rs.loadFuncOffset, etl.TransformArgs{}); err != nil {
return err
}
rs.offsetEf.Build()
}
rs.gr.appendFixed(1, 1) // Sentinel (avoids checking for parts of size 1)
// Construct Elias Fano index
rs.ef.Build(rs.bucketSizeAcc, rs.bucketPosAcc)
rs.built = true
// Write out bucket count, bucketSize, leafSize
binary.BigEndian.PutUint64(rs.numBuf[:], rs.bucketCount)
if _, err := rs.indexW.Write(rs.numBuf[:8]); err != nil {
return fmt.Errorf("writing bucketCount: %w", err)
}
binary.BigEndian.PutUint16(rs.numBuf[:], uint16(rs.bucketSize))
if _, err := rs.indexW.Write(rs.numBuf[:2]); err != nil {
return fmt.Errorf("writing bucketSize: %w", err)
}
binary.BigEndian.PutUint16(rs.numBuf[:], rs.leafSize)
if _, err := rs.indexW.Write(rs.numBuf[:2]); err != nil {
return fmt.Errorf("writing leafSize: %w", err)
}
// Write out salt
binary.BigEndian.PutUint32(rs.numBuf[:], rs.salt)
if _, err := rs.indexW.Write(rs.numBuf[:4]); err != nil {
return fmt.Errorf("writing salt: %w", err)
}
// Write out start seeds
if err := rs.indexW.WriteByte(byte(len(rs.startSeed))); err != nil {
return fmt.Errorf("writing len of start seeds: %w", err)
}
for _, s := range rs.startSeed {
binary.BigEndian.PutUint64(rs.numBuf[:], s)
if _, err := rs.indexW.Write(rs.numBuf[:8]); err != nil {
return fmt.Errorf("writing start seed: %w", err)
}
}
var features Features
if rs.enums {
features |= Enums
if rs.lessFalsePositives {
features |= LessFalsePositives
}
}
if err := rs.indexW.WriteByte(byte(features)); err != nil {
return fmt.Errorf("writing enums = true: %w", err)
}
if rs.enums && rs.keysAdded > 0 {
// Write out elias fano for offsets
if err := rs.offsetEf.Write(rs.indexW); err != nil {
return fmt.Errorf("writing elias fano for offsets: %w", err)
}
}
if err := rs.flushExistenceFilter(); err != nil {
return err
}
// Write out the size of golomb rice params
binary.BigEndian.PutUint16(rs.numBuf[:], uint16(len(rs.golombRice)))
if _, err := rs.indexW.Write(rs.numBuf[:4]); err != nil {
return fmt.Errorf("writing golomb rice param size: %w", err)
}
// Write out golomb rice
if err := rs.gr.Write(rs.indexW); err != nil {
return fmt.Errorf("writing golomb rice: %w", err)
}
// Write out elias fano
if err := rs.ef.Write(rs.indexW); err != nil {
return fmt.Errorf("writing elias fano: %w", err)
}
if err = rs.indexW.Flush(); err != nil {
return err
}
if err = rs.fsync(); err != nil {
return err
}
if err = rs.indexF.Close(); err != nil {
return err
}
if err = os.Rename(rs.tmpFilePath, rs.indexFile); err != nil {
rs.logger.Warn("[index] rename", "file", rs.tmpFilePath, "err", err)
return err
}
return nil
}
func (rs *RecSplit) flushExistenceFilter() error {
if !rs.enums || rs.keysAdded == 0 || !rs.lessFalsePositives {
return nil
}
defer rs.existenceF.Close()
//Write len of array
binary.BigEndian.PutUint64(rs.numBuf[:], rs.keysAdded)
if _, err := rs.indexW.Write(rs.numBuf[:]); err != nil {
return err
}
// flush bufio and rewind before io.Copy, but no reason to fsync the file - it temporary
if err := rs.existenceW.Flush(); err != nil {
return err
}
if _, err := rs.existenceF.Seek(0, io.SeekStart); err != nil {
return err
}
if _, err := io.CopyN(rs.indexW, rs.existenceF, int64(rs.keysAdded)); err != nil {
return err
}
return nil
}
func (rs *RecSplit) DisableFsync() { rs.noFsync = true }
// Fsync - other processes/goroutines must see only "fully-complete" (valid) files. No partial-writes.
// To achieve it: write to .tmp file then `rename` when file is ready.
// Machine may power-off right after `rename` - it means `fsync` must be before `rename`
func (rs *RecSplit) fsync() error {
if rs.noFsync {
return nil
}
if err := rs.indexF.Sync(); err != nil {
rs.logger.Warn("couldn't fsync", "err", err, "file", rs.tmpFilePath)
return err
}
return nil
}
// Stats returns the size of golomb rice encoding and ellias fano encoding
func (rs *RecSplit) Stats() (int, int) {
return len(rs.gr.Data()), len(rs.ef.Data())
}
// Collision returns true if there was a collision detected during mapping of keys
// into 64-bit values
// RecSplit needs to be reset, re-populated with keys, and rebuilt
func (rs *RecSplit) Collision() bool {
return rs.collision
}