-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenerate_pc_data.py
51 lines (44 loc) · 1.8 KB
/
generate_pc_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
Code to generate point cloud data from the dataset.
"""
import hydra
from puzzlefusion_plusplus.vqvae.dataset.dataset import build_geometry_dataloader
import os
import numpy as np
from tqdm import tqdm
@hydra.main(config_path='config/ae', config_name='global_config.yaml')
def main(cfg):
cfg.data.batch_size = 1
cfg.data.val_batch_size = 1
train_loader, val_loader = build_geometry_dataloader(cfg)
def save_data(loader, data_type):
save_path = f"{cfg.data.save_pc_data_path}/{data_type}/"
os.makedirs(save_path, exist_ok=True)
for i, data_dict in tqdm(enumerate(loader), total=len(loader), desc=f"Processing {data_type} data"):
data_id = data_dict['data_id'][0].item()
part_valids = data_dict['part_valids'][0]
num_parts = data_dict['num_parts'][0].item()
mesh_file_path = data_dict['mesh_file_path'][0]
graph = data_dict['graph'][0]
category = data_dict['category'][0]
part_pcs_gt = data_dict['part_pcs_gt'][0]
ref_part = data_dict['ref_part'][0]
np.savez(
os.path.join(save_path, f'{data_id:05}.npz'),
data_id=data_id,
part_valids=part_valids.cpu().numpy(),
num_parts=num_parts,
mesh_file_path=mesh_file_path,
graph=graph.cpu().numpy(),
category=category,
part_pcs_gt=part_pcs_gt.cpu().numpy(),
ref_part=ref_part.cpu().numpy()
)
# print(f"Saved {data_id:05}.npz in {data_type} data.")
# Save train data
save_data(train_loader, 'train')
# Save validation data
save_data(val_loader, 'val')
# python generate_pc_data.py +data.save_pc_data_path=pc_data/everyday
if __name__ == '__main__':
main()