This repository is an official implementation of Fusion from Decomposition: A Self-Supervised Decomposition Approach for Image Fusion (ECCV 2022).
- Linux
- Python 3
- NVIDIA GPU + CUDA cuDNN
- PyTorch 1.9
- torchvision 0.8
- Pillow 8.1
- Opencv 4.4
- Install python libraries and requests.
- Clone this repo:
git clone https://github.com/erfect2020/DecompositionForFusion.git
cd DecompositionForFusion
- Download COCO: https://cocodataset.org/
- Put your training images into any floder and modify the `option/train/SelfTrained_SDataset.yaml' to retarget the path.
- Train DeFusion
python selftrain.py --opt options/train/SelfTrained_SDataset.yaml
- Download test dataset:
- Multi-exposure image fusion: MEFB:https://github.com/xingchenzhang/MEFB, SICE:https://github.com/csjcai/SICE.
- Multi-focus image fusion: Real-MFF:https://githubmemory.com/repo/Zancelot/Real-MFF, Dataset:https://github.com/xingchenzhang/MFIFB.
- Visible-infrared image fusion: RoadScene:https://github.com/jiayi-ma/RoadScene, TNO:https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029.
- Modify test.py to select the data preprocess files for different tasks:
- (Option) Our pretrained model is avaliable at Google Drive
- Test DeFusion
python test.py --opt options/test/MEF_Test_Dataset.yaml or python test.py --opt options/test/SMEF_Test_Dataset.yaml
python test.py --opt options/test/MFF_Test_Dataset.yaml or python test.py --opt options/test/EMFF_Test_Dataset.yaml
python test.py --opt options/test/IVF_Test_Dataset.yaml or python test.py --opt options/test/TIVF_Test_Dataset.yaml
Distributed under the MIT License. See LICENSE.md
for more information.
If DeFusion helps your research or work, please consider citing DeFusion.
@InProceedings{Liang2022ECCV,
author = {Liang, Pengwei and Jiang, Junjun and Liu, Xianming and Ma, Jiayi},
title = {Fusion from Decomposition: A Self-Supervised Decomposition Approach for Image Fusion},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2022},
}