-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_bootstrap_normality.r
45 lines (36 loc) · 1.94 KB
/
check_bootstrap_normality.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#need the variable "projects"
norm_pval = matrix(NA, nrow = length(projects), ncol = 6)
BootOut = function(type, in_df, boot_n = 1000) {
boot_out = boot::boot(data = in_df,
statistic = function(dat, ind) mean(dat[ind, ], na.rm = T), #function for bootstrapped mean
R = boot_n)
return(boot_out$t)
}
for(i in seq_along(projects)) {
area_i = project_var$area_ha[i]
observed = read.csv(paste0(out_path, "_additionality_", projects[i], ".csv"), header = T) %>%
filter(started == T) %>%
mutate(t_loss = t_loss / area_i,
c_loss = c_loss / area_i,
additionality = additionality / area_i)
baseline_best = read.csv(paste0(out_path, "_baseline_best_", projects[i], ".csv"), header = T)
baseline_loose = read.csv(paste0(out_path, "_baseline_loose_", projects[i], ".csv"), header = T)
baseline_offset = read.csv(paste0(out_path, "_baseline_offset_", projects[i], ".csv"), header = T)
bootsum_out = BootOut(type = "cf_c_loss", in_df = dplyr::select(observed, c_loss))
norm_pval[i, 1] = shapiro.test(bootsum_out)$p.value
bootsum_out = BootOut(type = "p_c_loss", in_df = dplyr::select(observed, t_loss))
norm_pval[i, 2] = shapiro.test(bootsum_out)$p.value
bootsum_out = BootOut(type = "additionality", in_df = dplyr::select(observed, additionality))
norm_pval[i, 3] = shapiro.test(bootsum_out)$p.value
bootsum_out = BootOut(type = "best", in_df = dplyr::select(baseline_best, c_loss))
norm_pval[i, 4] = shapiro.test(bootsum_out)$p.value
bootsum_out = BootOut(type = "loose", in_df = dplyr::select(baseline_loose, c_loss))
norm_pval[i, 5] = shapiro.test(bootsum_out)$p.value
if(nrow(baseline_offset) > 0) {
bootsum_out = BootOut(type = "offset", in_df = dplyr::select(baseline_offset, c_loss))
norm_pval[i, 6] = shapiro.test(bootsum_out)$p.value
} else {
norm_pval[i, 6] = NA
}
cat("Project", i, "\n")
}