Student: Ilaria Lauzana
Supervisors: Nadia Figueroa, Jose Medina
This repository contains the implementation of the Bayesian Online Multivariate Changepoint Detection algorithm, proposed by Ilaria Lauzana, Nadia Figueroa and Jose Medina.
We provide 3 implementations:
- matlab
- python
- ros node to detect changepoints from streaming data (online_changepoint_detector)
You can find each implementation in its corresponding folder:
.
├── README.md
└── matlab
├── README.md
│ └── code
│ └── lightspeed
└── python
├── python-univariate
├── README.md
│ └── bayesian_changepoint_detection
├── python-multivariate
└── online_changepoint_detector
├── CMakeLists.txt
├── package.xml
└── scripts
└── data
└── results - figures
└── report-project-changepoint
├── README.md
├── main.tex
└── references
The matlab implementation is a self-contained code, no dependencies are needed. Except for the lightspeed toolbox, which is provided within the folder.
In order to run the changepoint detector, run the follwing script found in ./matlab/code/
:
> gaussdemo_multi.m
For the python implementation, install the following python libraries for linear algebra, machine learning methods and plotting:
$ sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose
Then install seaborn:
$ sudo pip install seaborn
Once installed, you can test the following example, found in ./python/python-multivariate/
:
$ python ./example_stream_data.py
If something is not working, try updating numpy, this generallt fixes the problem:
$ sudo pip install numpy --upgrade
Follow the README
file in ./online-changepoint-detector/
, must have all dependencies installed for the python
implementation.
... piece of 🍰