-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnobuk.py
211 lines (145 loc) · 5.38 KB
/
nobuk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import os
# In[3]:
os.chdir("C:\\Users\\user\\Documents\\Nobuk_new")
# In[8]:
# %load nobuk.py
"""nobuk_metrics.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1X5VEW2B7kygcBl_2sDi37l1L2lZWj7Ih
# **METRIC**
STREAK: The number of consecutive days an organisation has tagged atleast 1 message.
[Longest streak, Shortest Streak, Current Streak]
DAU (Daily Active Users): The number of users who have logged into the app atleast once daily.
"""
import pandas as pd
# import sqlite3
import sqlite3
pd.options.mode.chained_assignment = None
from dateutil import parser
from datetime import datetime, timedelta
from itertools import compress
import numpy as np
from dateutil import parser
#Loading the streak data set
streak=pd.read_csv('tags_2908.csv')
streak['date'] = streak.apply(lambda x: parser.parse(x['created_at']).date(), axis = 1)
def datedeltas(df):
day = pd.Timedelta('1d')
in_block = (df.date.diff(-1) == -day) | (df.date.diff() == day)
return in_block
org = list(set(streak['org_id']))[1]
itemsmnt = streak.pivot_table(columns="org_id",aggfunc="sum").transpose().reset_index()
itemsmnt = itemsmnt[['item_amount', 'org_id','item_quantity']]
itemsmnt.columns = ['total_amount_tagged','org_id','product_qnty_sold']
dfs = []
for org in set(streak['org_id']):
try:
df = streak.loc[streak.org_id == org]
df.drop_duplicates(['date'],inplace=True)
df['inblock'] = datedeltas(df)
day = pd.Timedelta('1d')
breaks = df['date'].diff() != day
df['groups'] = breaks.cumsum()
df = df[['date','groups','org_id']]
df2 = df.copy()
df2 = pd.DataFrame(df2.pivot(values = 'date', columns= ['groups']))
df2 = df2.transpose()
df2 = df2.set_index(df2.index.rename('group')).fillna(0).reset_index()
strk = [[a!=0 for a in df2.loc[df2.group==x].values.flatten().tolist()[1:]]\
for x in list(df2.group)]
data = [list(compress(["a"]*len(a), a)) for a in strk]
ctrk = any([a == (datetime.now() - timedelta(days=1)).date() for a in list(df['date'])])
if ctrk:
loc = [a for a,b in enumerate(df['date']) if b == (datetime.now() - timedelta(days=1)).date()][0]
grp = list(df['groups'])[loc]
ss = len(data[grp-1])
dfs.append({"org_id": org,
"total_days_active": len(strk[0]),
"number_of streaks": len(strk),
"longest_streak": max([len(a) for a in data]),
"shortest_streak": min([len(a) for a in data]),
"mean_streak": np.mean([len(a) for a in data]),
"current_streak": ctrk,
"current_streak_duration": ss if ctrk else 0,
"last_streak": list(df['date'])[-1].strftime("%d-%m-%Y")})
except:
continue
dfs = pd.DataFrame(dfs)
dfsmain = dfs.merge(itemsmnt,on='org_id')
org_dets = pd.read_csv("org_details_2608.csv")
dfsmain = dfsmain.merge(org_dets,on='org_id')
dfsmain.to_csv('streak_data_3008.csv')
dfsmain.head(22)
import requests
import pandas as pd
data = requests.get("https://api.nobuk.africa/auth/metrics")
reqdata = data.json()
df_login = pd.DataFrame([x.split(":") for x in [a.split(" ")[0] for a in reqdata['data']]],columns=["org_id","date"])
df_login
df_login2=df_login.merge(org_dets,on="org_id")
df_login2.head()
df = df_login[['org_id', 'date']]
df['args'] = df.apply(lambda x: f"{x['org_id']}-{x['date']}", axis=1)
df.drop_duplicates('args',inplace=True)
df.pivot_table(values="org_id",columns="date",aggfunc="count").transpose()
df = streak.loc[streak.org_id == org]
df.drop_duplicates(['date'],inplace=True)
df['inblock'] = datedeltas(df)
day = pd.Timedelta('1d')
breaks = df['date'].diff() != day
df['groups'] = breaks.cumsum()
df = df[['date','groups','org_id']]
df2 = df.copy()
df2 = pd.DataFrame(df2.pivot(values = 'date', columns= ['groups']))
df2 = df2.transpose()
df2 = df2.set_index(df2.index.rename('group')).fillna(0).reset_index()
strk = [[a!=0 for a in df2.loc[df2.group==x].values.flatten().tolist()[1:]] \
for x in list(df2.group)]
data = [list(compress(["a"]*len(a), a)) for a in strk]
df4 = df.merge(org_dets,on="org_id")
df4
dfsmain.head()
import os
import smtplib
from email.mime.text import MIMEText
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase
from email.mime.application import MIMEApplication
import os
import urllib
import requests
import json
def sendMail():
smtp_ssl_host = 'smtp.gmail.com' # smtp.mail.yahoo.com
smtp_ssl_port = 465
username = 'edwinokwaro3@gmail.com'
password = 'dzdsesnzderrvubc'
sender = 'edwinokwaro3@gmail.com'
targets = ['edwinokwaro3@gmail.com','piuskanuti@gmail.com']
msg = MIMEMultipart()
msg['Subject'] = 'Streak Data'
msg['From'] = sender
msg['To'] = ', '.join(targets)
txt = MIMEText('please find the attached streak data.')
msg.attach(txt)
filepath = 'streak_data_3008.csv'
with open(filepath, 'rb') as f:
msg.attach(MIMEApplication(f.read(), Name="streak_data_3008.csv"))
server = smtplib.SMTP_SSL(smtp_ssl_host, smtp_ssl_port)
server.login(username, password)
server.sendmail(sender, targets, msg.as_string())
sendMail()
from apscheduler.schedulers.blocking import BlockingScheduler
from nobuk import sendMail
sched = BlockingScheduler()
@sched.scheduled_job('interval', seconds=10)
def timed_job():
print('This job is run every one minute.')
sendMail()
sched.start()
# In[ ]: