diff --git a/book/en/labs/nlp4ss-lab-3.ipynb b/book/en/labs/nlp4ss-lab-3.ipynb new file mode 100644 index 0000000..01dc7a9 --- /dev/null +++ b/book/en/labs/nlp4ss-lab-3.ipynb @@ -0,0 +1,601 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lab Session 3: Applying Traditional NLP Techniques to Environmental Communication Data\n", + "\n", + "## Objectives\n", + "\n", + "By the end of this lab, you will be able to:\n", + "\n", + "1. Apply traditional NLP techniques to the annotated Sierra Club press release data\n", + "2. Implement and compare different text classification methods\n", + "3. Conduct topic modeling on environmental communication texts\n", + "4. Analyze word co-occurrence patterns in press releases\n", + "5. Visualize and interpret the results of these analyses\n", + "\n", + "## Installation\n", + "\n", + "Before we begin, let's install the necessary packages for this lab. Run the following cell to install the required libraries:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install nlp4ss" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup and Data Loading\n", + "\n", + "First, let's set up our environment and load the data from our previous lab sessions.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:hyfi.joblib.joblib:initialized batcher with \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " content zero_shot_topic \\\n", + "0 April 5, 2017\\n\\n\\nContact\\n Emily Pomilio (20... Renewable Energy \n", + "1 October 28, 2021\\n\\n\\nContact\\nShiloh Hernande... Environmental Justice \n", + "2 December 6, 2018\\n\\n\\nContact\\nCourtney Bourgo... Environmental Justice \n", + "3 Black households face disproportionately high ... Environmental Justice \n", + "4 February 24, 2020\\n\\n\\nContact\\nGabby Brown, g... Conservation \n", + "\n", + " few_shot_sentiment key_issues \n", + "0 Positive energy efficiency; electricity usage reduction... \n", + "1 Positive water quality; contamination; strip mining \n", + "2 Negative habitat destruction; environmental damage; flo... \n", + "3 Negative Energy burdens; Historic discrimination; Disin... \n", + "4 Neutral oil and gas drilling in the Arctic; thermal co... \n", + "Number of rows: 100\n" + ] + } + ], + "source": [ + "from hyfi import HyFI\n", + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.naive_bayes import MultinomialNB\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import classification_report\n", + "from gensim import corpora\n", + "from gensim.models import LdaModel\n", + "import nltk\n", + "from nltk.corpus import stopwords\n", + "from nltk.tokenize import word_tokenize\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import warnings\n", + "\n", + "warnings.filterwarnings(\"ignore\", category=DeprecationWarning)\n", + "\n", + "if HyFI.is_colab():\n", + " HyFI.mount_google_drive()\n", + " project_root = \"/content/drive/MyDrive/courses/nlp4ss\"\n", + "else:\n", + " project_root = \"$HOME/workspace/courses/nlp4ss\"\n", + "\n", + "h = HyFI.initialize(\n", + " project_name=\"nlp4ss\",\n", + " project_root=project_root,\n", + " logging_level=\"WARNING\",\n", + " verbose=True,\n", + ")\n", + "\n", + "# Load the data from previous lab sessions\n", + "topics_df = pd.read_csv(\n", + " h.project.workspace_dir / \"data/processed/sierra_club_topics.csv\"\n", + ")\n", + "sentiment_df = pd.read_csv(\n", + " h.project.workspace_dir / \"data/processed/sierra_club_sentiment.csv\"\n", + ")\n", + "issues_df = pd.read_csv(\n", + " h.project.workspace_dir / \"data/processed/sierra_club_key_issues.csv\"\n", + ")\n", + "\n", + "# Merge the dataframes\n", + "merged_df = pd.merge(topics_df, sentiment_df, on=\"content\")\n", + "merged_df = pd.merge(merged_df, issues_df, on=\"content\")\n", + "\n", + "print(merged_df.head())\n", + "print(f\"Number of rows: {len(merged_df)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Text Classification: Comparing Traditional Methods\n", + "\n", + "Let's compare the performance of traditional text classification methods (Naive Bayes and Logistic Regression) with the LLM-based zero-shot classification we performed in Lab 2.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Naive Bayes Classification Report:\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " Climate Change 0.00 0.00 0.00 4\n", + " Conservation 0.00 0.00 0.00 4\n", + "Environmental Justice 0.30 1.00 0.46 6\n", + " Renewable Energy 0.00 0.00 0.00 3\n", + " Wildlife Protection 0.00 0.00 0.00 3\n", + "\n", + " accuracy 0.30 20\n", + " macro avg 0.06 0.20 0.09 20\n", + " weighted avg 0.09 0.30 0.14 20\n", + "\n", + "Logistic Regression Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " Climate Change 0.00 0.00 0.00 4\n", + " Conservation 0.00 0.00 0.00 4\n", + "Environmental Justice 0.35 1.00 0.52 6\n", + " Renewable Energy 1.00 1.00 1.00 3\n", + " Wildlife Protection 0.00 0.00 0.00 3\n", + "\n", + " accuracy 0.45 20\n", + " macro avg 0.27 0.40 0.30 20\n", + " weighted avg 0.26 0.45 0.31 20\n", + "\n" + ] + } + ], + "source": [ + "# Prepare the data\n", + "X = merged_df[\"content\"]\n", + "y = merged_df[\"zero_shot_topic\"]\n", + "\n", + "# Split the data\n", + "X_train, X_test, y_train, y_test = train_test_split(\n", + " X, y, test_size=0.2, random_state=42\n", + ")\n", + "\n", + "# Create TF-IDF vectors\n", + "tfidf_vectorizer = TfidfVectorizer(max_features=5000)\n", + "X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)\n", + "X_test_tfidf = tfidf_vectorizer.transform(X_test)\n", + "\n", + "# Train and evaluate Naive Bayes classifier\n", + "nb_classifier = MultinomialNB()\n", + "nb_classifier.fit(X_train_tfidf, y_train)\n", + "nb_predictions = nb_classifier.predict(X_test_tfidf)\n", + "print(\"Naive Bayes Classification Report:\")\n", + "print(classification_report(y_test, nb_predictions))\n", + "\n", + "# Train and evaluate Logistic Regression classifier\n", + "lr_classifier = LogisticRegression(random_state=42, max_iter=1000)\n", + "lr_classifier.fit(X_train_tfidf, y_train)\n", + "lr_predictions = lr_classifier.predict(X_test_tfidf)\n", + "print(\"Logistic Regression Classification Report:\")\n", + "print(classification_report(y_test, lr_predictions))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Topic Modeling with LDA\n", + "\n", + "Now, let's apply Latent Dirichlet Allocation (LDA) to discover latent topics in the press releases.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:gensim.models.ldamodel:too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LDA Topics:\n", + "Topic 0: 0.012*\"de\" + 0.012*\"sierra\" + 0.012*\"club\" + 0.010*\"energy\" + 0.006*\"clean\" + 0.006*\"communities\" + 0.006*\"la\" + 0.005*\"health\" + 0.005*\"environmental\" + 0.005*\"gas\"\n", + "Topic 1: 0.012*\"club\" + 0.012*\"energy\" + 0.012*\"sierra\" + 0.007*\"clean\" + 0.006*\"environmental\" + 0.005*\"communities\" + 0.005*\"public\" + 0.005*\"protect\" + 0.005*\"coal\" + 0.004*\"gas\"\n", + "Topic 2: 0.015*\"de\" + 0.012*\"club\" + 0.011*\"sierra\" + 0.010*\"energy\" + 0.008*\"la\" + 0.008*\"clean\" + 0.006*\"communities\" + 0.006*\"climate\" + 0.006*\"new\" + 0.005*\"power\"\n", + "Topic 3: 0.018*\"sierra\" + 0.013*\"energy\" + 0.012*\"club\" + 0.009*\"clean\" + 0.008*\"communities\" + 0.007*\"environmental\" + 0.007*\"grassroots\" + 0.006*\"public\" + 0.006*\"new\" + 0.005*\"climate\"\n", + "Topic 4: 0.016*\"club\" + 0.015*\"sierra\" + 0.007*\"environmental\" + 0.007*\"clean\" + 0.006*\"energy\" + 0.006*\"public\" + 0.005*\"communities\" + 0.005*\"health\" + 0.005*\"wildlife\" + 0.005*\"climate\"\n" + ] + } + ], + "source": [ + "def preprocess_text(text):\n", + " tokens = word_tokenize(text.lower())\n", + " stop_words = set(stopwords.words(\"english\"))\n", + " return [token for token in tokens if token.isalpha() and token not in stop_words]\n", + "\n", + "\n", + "# Preprocess the texts\n", + "processed_texts = merged_df[\"content\"].apply(preprocess_text)\n", + "\n", + "# Create a dictionary and corpus\n", + "dictionary = corpora.Dictionary(processed_texts)\n", + "corpus = [dictionary.doc2bow(text) for text in processed_texts]\n", + "\n", + "# Train the LDA model\n", + "lda_model = LdaModel(corpus=corpus, id2word=dictionary, num_topics=5, random_state=42)\n", + "\n", + "# Print the topics\n", + "print(\"LDA Topics:\")\n", + "for idx, topic in lda_model.print_topics(-1):\n", + " print(f\"Topic {idx}: {topic}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LDA visualization saved as 'lda_visualization.html'\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Visualize the topics\n", + "import pyLDAvis.gensim\n", + "\n", + "vis = pyLDAvis.gensim.prepare(lda_model, corpus, dictionary)\n", + "pyLDAvis.save_html(vis, \"lda_visualization.html\")\n", + "print(\"LDA visualization saved as 'lda_visualization.html'\")\n", + "pyLDAvis.display(vis)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Word Co-occurrence Analysis\n", + "\n", + "Let's analyze word co-occurrence patterns in the press releases to understand which environmental concepts are frequently mentioned together.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACUwAAAYqCAYAAAABp7bTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdedxXc/4//ufVvm8qtI8W2RMVQmgsFfqEMZZRUTQfJmOGMLbM2BkyZFBCZiyDGeGTbVBRpCTZSkrRIi2ifb3evz/6db7XpWutq6449/vtdt1u57zP6zzP67zP+31OM++H1ysrk8lkAgAAAAAAAAAAIAXKlHYHAAAAAAAAAAAAdhSBKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAACAn4nevXtHVlZWZGVlxaOPPlra3WEHePTRR5Nr3rt379Luzg4ze/bs5LybNWtW2t2hGEaPHp1cu6OOOmqHHnvzcbOysnbocWFrpPX+DgAAsKMITAEAAOwEcv74X1J/119/fWmfVolYsGBB/OMf/4g+ffrEwQcfHLvsskuUL18+atWqFa1bt45evXrFiy++GNnZ2VtVf+rUqTFgwIDYf//9o06dOlG1atVo1apV9OrVK954440SPpvcP4Dm91epUqXYdddd44gjjog//elPMW3atBLvB5SGxYsXx6BBg+Lkk0+OZs2aRfXq1aNcuXJRo0aNaNGiRRx77LFx2WWXxTPPPBPfffddaXeXHxk7dmxce+21ceSRR0bz5s2jRo0aUbFixdh1112jbdu2cf7558fjjz8eq1atKu2u7pSaNWuW732/TJkyUbNmzWjRokWcfvrp8cgjj8Tq1atLu8s/S9dff32Bz+DKlSvHbrvtFocffnhceumlMXny5NLuMgAAANtBudLuAAAAAOTl66+/jt69e8eYMWPyDEP98MMP8cMPP8Tnn38ejz32WBxwwAHxj3/8I/bbb78iH+Omm26KP//5z7F+/fpcr3/xxRfxxRdfxGOPPRZnnnlmPPjgg1G9evVtPqeiWrt2bSxcuDAWLlwYY8eOjdtvvz0uvPDCuOuuu6J8+fI7rB9QUrKzs+OOO+6I66+/PtasWbPF9uXLl8fy5ctj5syZ8frrr0dERJkyZeLJJ5+M008/fUd3lx959dVX4+qrr45JkybluX3z/Wry5Mnx0EMPRbVq1eL888+Pa665JurUqbODe/vTlMlkYtmyZbFs2bKYOXNmPPPMM3HVVVfFI488EieccEJpdy9V1qxZE2vWrIlvv/02xo0bF3fddVf86le/igcffDBq165d2t0DAACghAhMAQAA7ARq1KgRF110UYFtJkyYEBMnToyIiAYNGkSPHj0KbN++ffsS619pmD9/fowaNSrXa02bNo02bdpE/fr1Y+XKlTFx4sT44osvIiJiypQp0bFjx3jjjTeiXbt2hda/7rrr4oYbbkjWd9999zjiiCOiUqVKMWnSpPj0008jIuLJJ5+MJUuWxMiRI6NcuZL9n9HVq1ePnj17bvH6qlWrYtasWfHuu+/G2rVrIzs7OwYPHhyLFi2Kp556qkT7ADtCnz59ck0TWaZMmWjbtm20atUqqlevHitWrIi5c+fG5MmTY9myZRGxKWS1eZnSkZ2dHQMGDIi77ror1+tVqlSJDh06xG677RbVqlWLhQsXxqxZs+Ljjz+OTCYTK1asiEGDBsUrr7wSn332WSn1fufWuXPnaN26dbKenZ0dS5YsiXfeeSfmzp0bEZtGWDzxxBPjhRdeiK5du5ZWV3/W8vr31KpVq2LmzJnx7rvvJoHqZ555JubOnRtvvvlmVKpUqTS6CgAAQAkTmAIAANgJ1KlTJwYPHlxgm+uvvz4JTLVs2bLQ9j8XDRo0iPPOOy969eoVLVq02GL7888/H3379o3FixfH8uXL41e/+lVMnTo1KleunG/NN954I1dYasCAAXHjjTdGhQoVkteefPLJOO+882LNmjXx2muvxc033xzXXXddiZ5bYdd9yZIl8dvf/jaeffbZiIj417/+FT179sz3h/NHH300VyiFn7/evXtH7969S7sbBXrsscdyfS7PPffcuOmmm2L33Xffom12dna8++678eyzz8bw4cPzrdmsWbPIZDLbo7vkcPbZZ+cKae69995xww03RLdu3aJixYpbtJ8/f3489dRTcdttt8XChQtNzVeA3/zmN3l+d7Ozs+Ohhx6Kiy++ONauXRsbN26Mc889N7788suoWrXqju/oz1xB/56aM2dO9OzZM0aPHh0REe+++27cd999cemll+7AHgIAALC9lCntDgAAAEBeatSoEXfddVfMnDkzbrjhhjzDUhER3bt3j5deeinKli0bERFfffVVPPbYYwXW/tOf/pQsn3HGGXH77bfnCktFRJx55pkxaNCgZP2vf/1rLF68eGtPZ6vssssu8dRTT8U+++yTvPb444/v0D7AtrrtttuS5T59+sTDDz+cZ1gqYtPIUx07doxBgwbFvHnzjKpTiu66665cYalzzjknpkyZEqecckqeYamITQHXP/7xjzFz5sy46KKLIisra0d192ejTJkyccEFF8Sdd96ZvLZw4UL3/lLQuHHjePHFF6Nx48bJaw8++GAp9ggAAICSJDAFAADATmnvvfeOP/zhD0Wa+qZdu3Zx6qmnJusjR47Mt+3EiROTkbrKlCkTt99+e75t+/XrFy1btoyIiOXLl8c//vGPona/xJQtWzZOP/30ZN30VvyUzJs3L9dndsCAAUXet3LlytGgQYPt0S0KMWvWrLjyyiuT9W7dusXw4cOLPC1ptWrVYvDgwcIl26Bfv35Rt27dZP31118vxd6kV7Vq1aJv377J+hdffBELFiwoxR4BAABQUgSmAAAAfoYymUw888wzceaZZ0bz5s2jWrVqUa1atWjevHmcddZZ8eyzzxZpOqujjjoqsrKyIisrK5mSZs6cOXHNNdfEAQccEHXq1ImqVatG69at4w9/+EPMmDFjO59Z/jp27Jgsz549O992I0aMSJZ/+ctf5ho54seysrKiV69eyfpzzz23TX3cWjlH41m5cmW+7Xr37p1cr6JMzTdt2rS4+OKLY88994yqVatGnTp1ok2bNnHttdfGnDlzIiJi9OjRSc2jjjoqzzr5tXnppZfizDPPjJYtW0a1atUiKysr7r777lz7rl+/Pl599dW4/PLL4+ijj44GDRpEpUqVonLlytGoUaPo0qVL3H333bFixYpCz2f27NlJP5o1a5a8/vbbb8c555wTLVq0iCpVqkTNmjXjqKOOiieeeCLP78GoUaPiV7/6VbRs2TIqV64c9evXj27dusXLL79caB8iNn3/RowYEWeddVbsueeeUaNGjShbtmxUrVo1mjVrFsccc0xcccUVMWrUqMjOzi5Szfw8+uijyTnnNzVfftfnzTffjDPOOCP22GOPqFSpUuyyyy5x5JFHxuDBg2P9+vXb1K/N5s2bl2u9adOmJVI3v2tdkCVLlsSdd94Zxx57bDRu3DgqVaoUtWrVir333jsuuuiieP/99wutcf311yfHvf766yMiYvXq1TFs2LA47rjjokmTJlGhQoXIysqKDz/8MCLyvkYbN26Mp556Krp37x577LFHVK5cObKysnLdnzbXHjFiRFx88cVx+OGHx6677hoVKlSIatWqRbNmzaJHjx4xbNiwWLduXRHfuaK58847k89A1apVY+jQoVs1WtRxxx23Vccvyn3nxza3L24/J06cGH379o1WrVol98H27dvHLbfcEsuWLduK3peMcuXKRbt27ZL1L7/8Mtf2vO7333//ffztb3+LI488Mho2bBjlypWLrKys+P7777eon8lk4rnnnotevXpFq1atombNmlGpUqVo3Lhx/M///E8MHz48NmzYUKS+Tps2LS6//PI45JBDom7dulGhQoWoVKlS1K9fPw466KA499xzY/jw4bF06dJ8a6xYsSIeeOCB6NatWzRp0iSqVKkS5cuXj5o1a0br1q3jpJNOiptvvjk++eSTIvWpJLVp0ybX+vz58wvdpyTuN1tj6tSpcdVVV0X79u2T+0W9evWiQ4cOcd111xWp7xERP/zwQzz55JPRr1+/6NChQ3Jda9SoEc2bN48zzzwznn766WI9w958883o06dP7LffflGrVq0oV65cVKlSJRo1ahRHHHFEXHLJJfF///d/RbqfldT7uyOf1wAAwE4oAwAAwE/CwIEDMxGRiYhMp06d8m03ffr0zIEHHpi0ze/voIMOysycObPAY3bq1ClpP2rUqMzzzz+fqVmzZr41K1eunHnwwQdL+MyL5p577kn6sffee+fb7tBDD03a3XzzzYXWHTduXNK+bNmymTVr1mxTPx955JGkXtOmTYu0z1/+8pdknyOOOCLfdr169UraPfLIIwXWHDRoUKZChQr5XsuaNWtmXnjhhcyoUaMK/dz9uM3333+f6dGjR551Bw0alOz39ddfZ3bZZZdCP6sRkdlll10yr732WoHnNGvWrFzv7YYNGzKXXHJJgXXPPffcTHZ2diaTyWRWrlyZ6d69e4HtBwwYUGAfFixYkOszVtjff//73wLrFSbn56lXr155tvnx9Vm7dm3m/PPPL7Bfbdu2zSxatGib+pbJZDITJ07MVfezzz7b5pqZzJbXujCDBw8u8N4VEZmsrKzMeeedl1m7dm2+dXLehwcOHJj57LPPMvvss0+e9SZPnpzJZLa8RvPmzcscfvjhee7z3HPPJccaP358plq1akX6HDVr1izzwQcfbOO7usnq1aszVapUSWr37du3ROputjX3lKLI+X4Utc3AgQMzZcqUyfd9bdiwYeadd94p7inmq2nTpkW+R2cymcxZZ52VtG/ZsmWubT++348dOzbTuHHjPM9j6dKlufadMmVKpk2bNoV+rvbcc8/Mp59+WmAfBw4cmClbtmyRPqdnn312njXeeeedTMOGDYt831y/fn2h711hfS7O5+u1117Ldfxx48YV2L6k7jdFub9vtmbNmky/fv0KvRaVK1fO3HvvvQXW+ve//52pWLFika7FAQcckPnyyy8LrLdixYrMySefXOTrO3To0ALrldT7u6Of1wAAwM6naONoAwAA8JMwderU6NSpUyxatCh5bb/99os2bdpEVlZWTJ48OT7++OOIiJg0aVIcdthh8dZbb0WrVq0Krf3+++/H1VdfHevWrYtddtkljjrqqKhdu3bMnj07xowZE+vXr4/Vq1dHv379omzZstGnT5/tdp552XxeEVHgqFFTp05Nltu2bVto3QMPPDBZ3rhxY0yfPj3222+/rexl8WVnZ8ezzz6brB9xxBHbXPOee+6JP/zhD8l6xYoVo1OnTtGkSZNYunRpjBkzJhYvXhynnXZa3HLLLcWqnclk4je/+U383//9X2RlZcXBBx8ce++9d2Qymfjkk09yjf6ycuXKWLJkSURE1K5dO/bZZ59o2rRpVKtWLdatWxezZs2K8ePHx5o1a2LJkiXRtWvXGDNmTBx22GFF6ss111wTd999d5QpUybatWsXe++9d2zYsCHefvvtZBSyRx55JFq2bBlXXHFFnHbaafHyyy9HuXLlomPHjtGiRYtYtWpVjBo1KpmC6Y477oi2bdvGGWecscXxNm7cGN26dYtJkyYlr+27776x7777Rq1atWLNmjWxYMGCmDJlSnzzzTfFel9L0gUXXBDDhw+PMmXKRIcOHaJ169aRnZ0d48ePj88//zwiIj744IPo2bNnvPTSS9t0rD322COysrKSkbxuvfXWGD58+DafQ3Fccskl8be//S1Zr1u3bhx66KGx2267xZo1a2Ly5MnxySefRCaTiYcffjjmz58fI0eOjDJlCh6YfcmSJXHCCSfE119/HZUqVYrDDz88mjZtGitWrIjx48fnuc/atWvj5JNPjkmTJkW5cuXisMMOi+bNm8fatWvjgw8+yNV26dKlychq9evXj3322ScaNWoUVatWjVWrVsWMGTNiwoQJsWHDhpg9e3Z06tQpPvjgg2jRosU2vV/vvfderFq1Klk/66yztqnezuqee+6JP//5zxER0aJFi+jQoUNUqFAhPv7442R0mnnz5sUJJ5wQY8aM2WKUoR0h54hMNWvWzLfdjBkz4pJLLokffvghqlevHkceeWQ0aNAgli5dGm+99Vautm+99VacdNJJyehZ5cuXj3bt2kXLli2jfPnyMXv27Bg7dmysWbMmPv/88zjssMPi3Xffjb322muL4/7tb39L3sOITd+tQw45JHbffffIysqK7777LqZNmxZTp06NjRs35tn3OXPmxPHHHx/Lly/P1Z/NIwKuXLkyZs+eHVOmTCm1Eb9+PCrTrrvumm/b7XW/KcjKlSvj+OOPj3HjxiWvNW/ePA466KCoXbt2fPfddzFu3LiYP39+rF69Ovr37x/Lli2Lq666Ks96CxcujLVr10ZERKNGjWLvvfeO3XbbLapUqRIrVqyIqVOnxgcffBCZTCamTJkSRx55ZHz44Yexyy675FnvN7/5TbzwwgvJeosWLeLAAw+MOnXqxPr162PRokXx8ccfFzg66GYl9f7+VJ7XAADAdlaKYS0AAACKobAREdauXZs54IADkjb169fP87+Gf/XVVzN169ZN2rVt2zazbt26PI+Zc4SpzaMRXXbZZVuMsjRnzpzMEUcckbStUqVKZsaMGSVy3kWxfPnyTO3atZPj33HHHXm2+/bbb3ONFjB16tQi1a9Xr16yz9NPP71NfS3OCFNLly7NnH322Un76tWrZ+bOnZtv+6KMMPXZZ5/lGlnq2GOPzcyfPz9Xm3Xr1mX+9Kc/ZSIi1ygTRRkNply5cpmIyOy3336Zjz76aIu2OT87s2fPzvTv3z/z3nvvZTZu3Jhn7R9++CFz6aWXJvVbtWqVb9ucow6VL18+k5WVlWndunUy0s9m69evzzXyVO3atTN//vOfMxGROfzww7cYLWPVqlWZ008/PWm/xx57JKNS5TRixIikze67754ZP358nv3MZDKZTz75JHPFFVdk3nvvvXzbFEVxR5jafD3btWu3xec/Ozs7c/fdd+f6jowZM2ab+pfJZDJHHnlkrprdunXLvP7669s0SkxRR5gaNmxY0q5GjRqZoUOH5nm/e/PNN3ONcHPbbbflWS/nfXjzZ/20007LLFy4MFe7jRs3JsfJeY0279OpU6fMrFmztqif8/sxfvz4zFVXXZX5+OOP8z2/b7/9NnPOOeck9Tt37pxv26K64YYbknplypTJLF++fJtr5rSzjDBVoUKFTKVKlTL//Oc/t2g3duzYXJ+H/fbbL9/nZHEUZ4SpdevW5RqB71e/+lWu7Tnv95s/VxdddNEW12vdunXJPfObb77J1K9fP9mvZ8+eW9z/M5lNI+/kHCVwv/32y2zYsCFXm/Xr1+f6t8Qtt9yS73u0ZMmSzMMPP5zn9yrnvfiII47IzJs3L88a69evz4wePTpz9tlnb9GX4iruCFNnnnlm0r5evXp53v8zmZK/3xR1hKmePXvmekaOGjVqizYbNmzI/P3vf0+eAWXLls139LQXXnghc8stt2S++OKLfI/55ZdfZo4//vjkuH369Mmz3Ycffpi0qVatWuall17Kt+bMmTMzN954Y+aFF17Ic3tJvr+l8bwGAAB2PgJTAAAAPxGF/cD38MMP5wqLFDQ904QJE5IfWCMiM3z48Dzb5QxMRUTmt7/9bb41ly9fnmndunXS9pxzzin2OW6tnIGaatWqbRFe2Oyzzz7LdT7fffddkervt99+yT4PPPDANvU15w+g1atXz1x00UVb/PXp0yfTuXPnTKVKlZK2DRo0yEyaNKnA2kUJTP36179O2hxwwAGZ1atX51vv4osvzvV+FSXcEBGZ3XbbrUSmc8vpt7/9bVI/vx9cc4ZoNv+w/c033+TZdsOGDZk999wzV/u99tors2rVqjzbL1u2LFOnTp2kbV4/nOb8HBY2pVBJKW5gKmLT1F4FhWBOO+20In3ni+rdd9/Nc/rH6tWrZzp37py54oorMs8++2y+1yovRQlMLVu2LFOrVq0kHFPQD+KZzKb7w+bv3C677JJZuXLlFm1y3ocjInPcccflG+DbLOc12hw+ye9ztrW6dOmS1N/WaQ/79OmT1GrWrFkJ9fD/2VkCUxGReeqpp/Jt+8knn+QKjA4bNqxI/ShIcQJTgwcPztXXHz97ct7vI4o2deJ5552XtL/44osLbLthw4bMMccck+979fHHHyfbOnbsWOix83PQQQcldQoK6JSk4gSmRo8enevfS1dddVWe7bbH/aYo9/e33noradO8efNCn705a55wwgkFti3MunXrMvvvv38mIjKVKlXK899U9957b3K8q6++equPVdLvb2k8rwEAgJ3P1o/1CwAAwE7lwQcfTJb/93//N9dUcj/Wrl27OP/885P1+++/v9D61atXj1tvvTXf7dWqVYvbb789WX/mmWfihx9+KLTutnrjjTfi7rvvTtb/9Kc/Rb169fJsu3l6q80qV65cpGPkbPfjGtti+fLlcd99923xN2zYsHjjjTdizZo1UaZMmbjkkkviiy++KNIUggVZunRpPPfcc8n6HXfcEZUqVcq3/Y033hg1atQo9nGuu+66qFu37lb1MT/nnntusvz6668XaZ+rrroqdttttzy3lS1bNk4//fRcr91yyy35fiaqV68e3bp1S9YnTJiwRZuc00Xl9xncGdx6661RrVq1fLefd955yXJe51lchxxySPznP/+JWrVq5Xp9+fLl8cYbb8Rtt90Wp512Wuy+++6x7777xi233BLff//9Nh/34YcfTupceOGF0aFDhwLb77XXXtGrV6+I2DTd3iuvvFLoMTZP+Vgct912W5HvPUXVu3fvZLmo34/8fPfdd8nyj6/Zz8kRRxwRv/71r/Pdvs8++8RFF12UrA8dOnRHdCuys7Nj6NChcemllyav1atXL84+++x896lUqVKu529eFi1aFP/85z8jImK33XaL2267rcD2ZcuWjZtuuilZf/zxx3NtL6n73c5431y9enV8/PHHce2118bxxx8fGzZsiIiIww8/PN9p7HbE/SYvd911V7J85513Fvrs7d27d7Ru3ToiIl599dVkWtytUb58+eRzuWbNmhg7duwWbUrq+pb0+7szfu4AAIAdr1xpdwAAAIBtt3z58nj//feT9ZyBh/z07ds3CUpNnDgxVq5cGVWrVs23/cknnxw1a9YssGbXrl2jXr16sWjRolizZk28++67ccIJJxTxLIrvq6++ijPOOCM2btwYEZt+zLziiivybb9mzZpc6xUqVCjScSpWrJgsr169eit6uvWys7Pj7rvvjldffTWGDBkShx9++FbXeuedd2LdunURsekH886dOxfYvnr16tG9e/f4xz/+UazjFBRCyM/69evjvffeiylTpsSCBQti+fLlyY/UEZs+45t9+OGHRap52mmnFbh9v/32S5YrV64cXbt2LbD9vvvumyzPmjVri+2NGzdOlocOHRonnnhilC1btkh93VEqVaoUJ510UoFtcoYtZ8+eXSLH7datW3zxxRdx5513xmOPPRbz58/Ps92nn34aV111Vfz1r3+N+++/f4tQW3G89NJLyfJZZ51VpH2OOeaYJHw6duzYOOWUU/Jtu//++8dee+1VrD7Vrl07jjvuuGLtExGxatWqGD9+fHz88cexaNGiWL58eXLfi4iYN29eslzU70d+cn7XCgrW/dT17Nmz0Da9evVKAilFeU4Wxz//+c9cz+1MJhNLliyJd955J+bMmZO8XqZMmRg2bFiB1+K4446L2rVrF3i8119/Pbn/n3LKKQWGZTfr0KFDVK1aNVauXLlFGCbn/W7UqFExffr0aNWqVaE1f6xx48bxxRdfRETEAw88UOAzfHsYM2ZMZGVlFdimQoUK8Zvf/Cb+9re/5Xv9t/f9Ji8bNmyI//73vxERUaNGjTjxxBOLtN/RRx8d06ZNi0wmE+PGjYuTTz4537bff/99jB8/Pj799NNYsmRJrFixIrKzs5Pt06ZNS5Y//PDDLZ4vOT8njz32WJx//vlRpUqVIvUzp5J+f38Kz2sAAGD7E5gCAAD4Gfjoo4+SH8+rVasW+++/f6H7tGnTJvkhdOPGjTFlypQ47LDD8m1/6KGHFlqzbNmy0a5du+SHrcmTJ2+3wNSSJUuiS5cusXjx4oiIaNSoUTz55JMF/uD14x+I161bV6QfjdeuXZssl+TIME2bNs0zkLJ+/fpYuHBhvPfee3H33XfH22+/HVOnTo2jjz46RowYkWuko+LIGaRo165dkUbG6dChQ7ECU7/4xS+iTp06RW6/evXquPnmm+OBBx5IrmVhitKuZs2a0ahRowLb5AwYtGrVKsqXL19g+5znlXN0is1OO+20uP766yM7OztGjhwZ++67b5x33nnRpUuX2GeffQr9UX5H2HPPPQs9z1122SVZzus8t1bdunXjlltuiZtuuikmTZoUb731VkyYMCE++OCDmDFjRq623333Xfz617+OFStWFCkAmpd33303WR4yZEgMHz680H3mzp2bLOcMreTloIMOKnaf2rRpU6wf5b/77ru47rrr4rHHHssVZCpIUb9H+alevXqyXJIj6u1sivJM22+//aJatWqxYsWK2LhxY3z00UdF2q8o3njjjXjjjTcKbLPrrrvGsGHDCr3nF+WzmPP78NFHH8Xvfve7onX0/7d06dJcgbHGjRvHIYccEuPHj48ffvghDjrooDjnnHOiR48e0bFjxyKHYk4//fR48803IyLiyiuvjP/+979x9tlnx7HHHlvoPXxHOe+882LQoEEF/nthe99v8vLRRx/FypUrI2LTaE+///3vi7TfxIkTCz3u3Llz48orr4xnn30217+BCpLXvadr167JvzU/+OCDaN26dfTp0ye6desWBx54YJHvhyX9/v4UntcAAMD2JzAFAADwM7Bo0aJkuXHjxkX6oadMmTLRuHHjZHSAwn5kb9KkSZH6krNdzn6VpBUrVkTXrl1j6tSpEbEp4PHqq68W+uPqj0foWL16dZECUzlHldoRI66UL18+GjZsGKecckr06NEj+vTpE4888khs2LAhevXqFdOnTy9WKGmzH39OiqK4P1gXZ2qbpUuXxjHHHFPsEXGKEhwpbDS0iIhy5f7f/y1S3Pbr16/fYvtee+0Vt99+ewwYMCAymUxMmzYtLr/88rj88sujdu3acdhhh0WnTp2ie/fuWzUSS0koynnmDFTlHOWrpJQpUybatWsX7dq1S15bsGBBPP/883HXXXfF9OnTk9cvuuiiOP7446Nhw4bFOsaKFStyfU4eeuihYvdz6dKlBW7fmmmcirPPV199FUceeWR8/fXXxTpGUYNV+cl5bymJqRF3VkV5pmVlZUWjRo2S5+T2eqZtPlb16tWjXr16ceCBB0aXLl3izDPPLFJItyifq5yjuo0dOzbP6dMKs3Tp0lwjLA0bNiyOOeaY+Pbbb2PFihVx//33x/333x/lypWLNm3axJFHHhnHH398dO7cOd9gTN++feOVV16JESNGRETuIFmTJk3iiCOOiKOPPjq6d+9e4lO9RkQ0aNAgevTokayvW7cu5s6dGxMnTkz+XfTAAw/EF198ES+++GKe12NH3G/ykvOaLlmyJO67774SOe7kyZOjc+fOxe5TXveeXXbZJR566KHo2bNnrF+/PubMmRPXX399XH/99VGtWrXo0KFDdOrUKU466aRo06ZNnnW3x/v7U3heAwAA21/h/ykpAAAAO72co4AUZ7qgnG0L+5G9qKNFFKfm1lizZk2cfPLJMWHChIjYNBrKyy+/HHvvvXeh++YcOSci4ttvvy3SMRcsWJAsb01QaVtkZWXFXXfdlbz/S5YsiYcffnirauX8nBT1ehY3IFacEbguuuiiJCxVoUKF6Nu3bzz//PMxffr0ZEq+TCYTmUwm1xR4OacDyk9xR4coqdEkLr300hg1alR07tw5V82lS5fGyJEj4/LLL48999wzfvnLX8bHH39cIscsjp111Izddtst+vXrFx9//HGceeaZyetr1qyJIUOGFLveDz/8sM19KiwstjWjzRVnn7POOisJS1WvXj3+8Ic/xCuvvBJffvllMuLR5u/HqFGjkv2K8v0oSLNmzZLlr7/++mc7ylRpP9MeeeSR5PplMpnIzs6OH374IWbMmBHPPPNMnHfeeUX+vBSl3fb4Tuy9994xZcqU6N+/f64w5oYNG+L999+Pu+66K44//vho2rRpviGXsmXLxn/+85946KGHtniOf/311/H4449H3759o0GDBtG3b9/47rvvtvk8cmrZsmUMHjw4+RsyZEi89NJL8fXXX8ett96ajMT4xhtvxB//+Mc8a+yI+82OOu7atWvj1FNPTQJG9erVi2uuuSZGjRoVc+bMiZUrV0Z2dnbyuX3kkUeSffO795xxxhkxYcKE6NGjR65A7ooVK+KNN96I6667Lg488MA4+OCD4+23394h5xmx8z+vAQCA7U9gCgAA4GcgZ6hl8/QsRZGzbc5pmPKyatWqEq9ZXOvXr49TTz01CQdUrlw5XnzxxVwj1RSkfv36UatWrWT9q6++KnSfNWvW5BpVpHXr1sXrdAmoVatWdOjQIVkvbBqn/OT8nGzN9SxJ8+bNi6eeeioiNo049Morr8TQoUPj5JNPjpYtW0a1atVyjUiyPcJ320unTp3i9ddfj2+++Sb+9a9/xcUXXxxt27bNNQXiG2+8ER06dIhx48aVYk93PhUqVIihQ4fmCibm9QN6YX4cHP3uu+9yhVOK8jd69OhtPZ2t9s4778Q777wTEZu+t+PHj0/CJ7/4xS+iatWquT5PJfn9OPzww5Pl7OzseP/990us9vayNSGxneGZtiPl/E7cddddxf4+ZDKZXGG6zXbddde455574ttvv43Ro0fHDTfcEF26dIkaNWokbebNmxfnn39+XHzxxXn2LSsrK/r06ROffvppfP755zFkyJDo1atX7LHHHkmb9evXx7Bhw6J9+/bbdaSvzSpXrhxXXHFF/OUvf0lee+CBB/K8L5TW/Sbncffff/+tuqbXX399rpr//ve/k4Byw4YNY8qUKXHDDTfEUUcdFY0aNYoqVarkChcV9d7Tpk2b+M9//hMLFy6M559/PgYMGBCHHnporgDVpEmT4uijj45nnnkm3/OMKNn31/MaAADSTWAKAADgZyDndDxz586NTCZT6D7Z2dkxZ86cZL2wqW6KOi1UcWoWx8aNG+Oss86Kl156KSI2TRv27LPPRqdOnYpVZ6+99kqWJ0+eXGj7Dz74IFkuW7ZsqU3NsvvuuyfLRQl65SXn9Zg7d26R9ilqu+J68803k89ply5d4uijjy6w/daec2nadddd4/TTT4+//e1vMWnSpFiwYEHcfffdyUhnq1evjn79+pVyL3c+VatWzRXa+eabb4pdo1atWlGxYsVkPecocT8FOUORvXr1KnQEvZL8fhxyyCG5Rl964oknSqx2URV3WsitGYGmKM+0TCYT8+bNS9a3x5RwO8quu+6aLG+P70PFihWjU6dOcc0118RLL70UixcvjpdffjnXd/nee++NiRMnFlinVatWcf7558ejjz4aM2fOjM8//zz++Mc/JgHamTNnxp///OcS739+rrzyymjbtm2yfsUVV2zRprTuN9vjmua891xyySW5/u2Rl+Lee2rVqhUnn3xy3H777fHOO+/E4sWL45FHHkmmyNy4cWNceOGFuaZC3hHvr+c1AACkk8AUAADAz8D++++f/Ji4fPnyIk0dMmXKlGTkjLJly8YBBxxQYPvx48cXWnPjxo25fgzN+SPjtsjOzo7evXvHs88+GxGb+vvEE09E165di10rZzCnKCM6jBkzJlk+7LDDcv1otyPlHA0l58gHxdGmTZtkeeLEiUUK1m2e+rCkzZ8/P1neb7/9Cm3/1ltvbZd+7Ej16tWL3//+9/H8888nr3366afx5ZdflmKvdk6VKlVKlrf2O9e+fftk+ac2Mkhpfj8qVaoUvXv3TtaffPLJHR44yzk60ZIlSwptvzXTZRXlmfbJJ58kI+gU5Tm5M8s5SuGO+D6UL18+TjjhhHj99ddj3333TV5/8cUXi1WnVatWceedd+YKSb3wwgsl1s/ClC1bNm677bZkfcKECTFixIgt2pXG/aZNmzbJ/XHhwoUxY8aMba65o+89NWrUiN69e8ebb76ZnMvixYvj3XffzdVuR7+/ntcAAJAOAlMAAAA/A9WrV4+DDz44WX/00UcL3WfYsGHJcvv27beY8uTHXnjhhVi2bFmBbV555ZVYuHBhRGz60f3QQw8ttB9F8dvf/jb++c9/RsSmqXsefvjhOO2007aq1v/8z/8ky6+//nqhIyjlfC9z7ruj5RwNq2HDhltV47DDDosKFSpExKZRe958880C269YsSLPH4ZLQs7QV2FTY61atSoee+yx7dKP0tCxY8dcU859++23pdibndOUKVOS5c0jjxTXiSeemCzff//9RQoI7iyK8/2YP39+rh/1S8Kll14a5cqVi4hN94ELLrhgq+q89tprW7Vf06ZNk2m/ZsyYEStWrCiw/dNPP13sY2x+phQk532nXbt2hT4nd2bHH398ck3feeedXN+x7alixYpx3HHHJetbe787+eSTt7nG1vrlL38ZHTt2TNZvuOGGLdqUxv2mcuXKccwxxyTrf//737e5ZnHuPZMmTSp0xLCiat68eeyzzz7J+o+vcWndzz2vAQDg501gCgAA4Gci51Qh9913X3z00Uf5tp00aVI8+OCDyfpvf/vbQusvW7Ysrrrqqny3r1y5Mi6//PJk/bTTTouaNWsWWrcwf/zjH2Po0KHJ+n333Rc9e/bc6nrt2rWLdu3aRcSmEbGuvPLKfNsOGTIkpk+fHhGbQmnbctxt8Z///CfXtDedO3feqjp16tSJ7t27J+uXX355rF27Nt/211133VZNdVUUe+yxR7L80ksvxcaNG/Nte+mll/4kfqRcvHhxkdp9//33uQIg9evX315dKnWzZ8+Oa665Jr777rsi7/OPf/wjPv/882T9hBNO2Kpj9+vXL2rVqhURm6bWLM40XosXLy7wM7m95fx+FDSazsaNG+OCCy6IdevWlfjxb7755mT9xRdfjHPPPbdI0+NFbHoe9O/ff6unsKpRo0a0bt06IjZNyff444/n23by5Mm5nhFFNXr06GTUwrxMnTo1Bg8enKz37du32MfYmTRs2DB+85vfRMSmqQZ79uxZaAh6s+zs7Fi0aFGu15YuXRrZ2dlF2j/nVL0/vt8V9b5ZUI0dYeDAgcnyBx98ECNHjsy1vbTuNzmnCLz33nvj9ddfL/K+eY0cV9R7z6pVq4oUpCzq9d24cWOu6Vd/fI1L+v31vAYAACIEpgAAAH42zj777GS6oHXr1sXxxx8fo0aN2qLd66+/Hl26dEl++G7btm2ceeaZhdavUKFC3HfffXHllVdu8eP8vHnzolu3bvHZZ59FxKZRD3L+uLi1Bg4cGIMGDUrWb7/99vjf//3fba57yy23JMuPP/54XHnllbF+/fpcbZ5++um45JJLkvXLLrss6tatu83HLo5MJhNPP/10nHvuuclrtWrVivPOO2+raw4cODAZZeqDDz6I7t27bxFGWr9+fVx77bUxaNCg7TYF4THHHBNVqlSJiE0jyPTq1Su+//77XG2WLVsWF1xwQTzwwAM/iZFdTj/99DjxxBPj2WefzXdkjnnz5sVZZ52VfIdatWoVzZs335Hd3KHWrFkTN910UzRr1iwuuOCCGDt2bL6hm+XLl8fNN9+c6/PdsGHDrQ4q1qxZM9f9489//nP06tUrvv766zzbZzKZGDduXFx44YXRpEmTWL169VYdtyR069YtGWFp9OjRcdlll23RnwULFsSpp54aI0eO3C7fj8suuyzXSH6PPvpoHHjggTFixIh8A1rz58+Pu+66K/bYY48YPHjwNo0Cc9ZZZyXLV155ZYwdO3aLNi+//HIcd9xxyXtVHBUqVIiePXvGk08+ucW2d999N44//vhYs2ZNRETss88+cc455xT7GDubm266KXbfffeIiPjoo4+iffv2BY4CNnfu3Bg0aFDsueee8a9//SvXtueffz5atWoVf/3rX2P27Nl57r927doYPHhwrmBaly5dcrVp0qRJ9OvXL8aMGZNvAOv999+P/v3751tjRzj22GPjkEMOSdZ/PMpUad1vOnXqFL169YqITeHCbt26xS233JLvqGxr1qyJESNGRPfu3XON2rXZSSedlCwPHz487rzzzi3CRjNmzIjjjjsuPvjgg0LvPQMGDIgjjzwyHnvssS2e8ZstWbIkzj///CQwVaNGjTjssMNytSnp99fzGgAAiIgoV9odAAAAoGRUqFAhnnzyyejUqVMsWrQoFixYEMccc0wccMAB0aZNm4iI+PDDD3NNw1O/fv148skno3z58oXWv/HGG+Pqq6+O2267LYYNGxZHHXVU1K5dO7766qsYPXp0rh/Q77777mjRosU2nc9LL70Uf/nLX5L1XXfdNb766qv43e9+V6T9//KXv+SaRiWnzp07xzXXXBM33nhjRETcdttt8Y9//COOOOKIqFSpUkyaNCk++eSTpP2xxx5b4OhaW+u7777L83zWr18fixYtigkTJsS8efOS18uWLRsPPfTQNgW39tlnn7j11lvjj3/8Y0REvPrqq9G0adM46qijokmTJrF06dIYM2ZMLFq0KCpUqBA333xzXHrppRGRe6qebVW7du247LLLkmv8+OOPx8svvxwdOnSIhg0bxjfffBOjR4+OlStXRrly5eLvf/978qPwzio7OztGjhwZI0eOjAoVKsQ+++wTrVq1ipo1a8by5cvj66+/jnfffTcJBZQtWzb+9re/lXKvd4zly5fH0KFDY+jQoVG1atVo27ZtNGzYMGrVqhWrV6+OL7/8MiZOnJgEVCIiqlatGk888URUq1Ztq4/bu3fv+PLLL5Nww2OPPRaPP/54tGnTJlq3bh3VqlWLFStWxNy5c+PDDz/cbiOqFVfr1q3jnHPOSaaEu/POO+OJJ56Idu3aRf369WP27Nnx1ltvxbp166J69epxxx13FGmkwOLIysqKp556Kv74xz/GPffcExERn3zySfTo0SOqVq0aHTp0iN133z2qVq0aCxcujFmzZsVHH32UKyRVvXr1rT5+//794/7774/58+fH999/H0ceeWR07NgxWrduHWvWrIn3338/pk2bFhGbwly9e/cuVv3bb789LrnkkjjrrLNi4MCB0aFDhyhfvnx88sknuaYZq1atWgwfPjwJmv6UNWjQIJ5//vno2rVrLF68OD7//PM4/vjjo2HDhtG+ffuoV69erF+/PhYvXhyffPJJzJo1q8B6M2fOjAEDBsSAAQOiSZMmsf/++ycj8CxYsCDGjx+fa3S5s88+e4sgzOrVq2PIkCExZMiQqF69erRp0yaaNm0aVatWjcWLF8e0adPi008/TdrXq1cvrr/++pJ7U4ph4MCBSVjrvffei9deey3XdIOldb958MEH45tvvonXXnst1q1bF1dddVXceOON0aFDh2jSpElUrFgxvv/++5g5c2Z88sknyciSBx100Ba1jjvuuDjyyCPjrbfeikwmE5dddlncd9990bZt26hZs2Z88cUX8c4778TGjRujYcOG8fvf/z7X6KI/lslk4u2334633347ypYtG61bt4699torateuHatXr4558+bFuHHjcv0b8q9//WtUrlx5i1ol+f56XgMAABERkQEAAOAnYeDAgZmIyEREplOnTvm2+/zzzzMHHnhg0ja/v7Zt22ZmzJhR4DE7deqUtB81alRmxIgRmRo1auRbs1KlSpm///3vJXK+jzzySKHnUNDfrFmzCqyfnZ2dueGGGzLly5cvsM4ZZ5yR+eGHH0rknLblvBo3bpx55ZVXCqzdq1evpP0jjzxSYNs77rijwHOvWbNm5oUXXsi89tpryWvdu3fPs9aoUaOK9Nn8sQ0bNmR69uxZ4HnXqlUr89xzz2VmzZqVvNa0adM86xWlzbb0O+e169Wr1xbbTzzxxCJfz/r162dGjBhR6DG3tU+ZzNZdn5x93RYLFy7MdOnSJVOhQoVifd47dOiQ+fDDD/OtW9xr/a9//SvToEGDIh+/ffv2mTVr1mxRJ+d9eODAgUV6D4pyjfKycuXKzHHHHVdgPxs1apQZO3bsVn8Hi2rkyJFFeq5s/qtdu3bm6quvzvPeWZy+Tpo0KVO3bt18j1OhQoXMfffdl8lkivaZ/XGba6+9NpOVlZVv/QYNGmTGjh279W/cjzRt2rTI9+jCFOd+/2OzZ8/OdO7cucjXc9ddd93i+fPMM88U+N7l/CtTpkzmwgsvzKxbt26LvlSrVq3I/TjggAMyU6dO3Za3LZPJFP3fU3lp3759su/hhx+eZ5uSut8U596xYcOGzLXXXpupUqVKkY5Zvnz5zEUXXZRnrQULFmTatm1b4P5777135tNPPy20j7/73e+K/D5Ur149M2TIkEKvQUm8v6XxvAYAAHY+RpgCAAD4mWnVqlW8//778eyzz8a///3vmDBhQixcuDAiNo0o1aFDhzjttNPi1FNPLfY0Rt27d4+PPvooHnjggRg5cmR8/fXXsW7dumjcuHGccMIJ8bvf/S5atmy5PU6rxGVlZcU111wTp556ajz00EPx2muvxZw5c2L9+vWx++67x6GHHhq9evWKX/7ylzu8b2XKlIkaNWrE7rvvHm3bto1u3brFKaecUqLT41122WXRrVu3uO++++K1116LuXPnRsWKFaNJkyZx0kknRb9+/aJx48a5pmGqVatWiR0/YtOIDcOHD49f/epXMWTIkHjvvfdi6dKlUbt27WjSpEl07949zjvvvGjQoEG+Uz7tTF544YWYPHlyvPHGG/Hee+/F1KlTY+7cubFy5cqoWLFi1KtXL/bff//o2rVrnHXWWVGjRo3S7vJ2V69evXjppZdi2bJlMWbMmBg7dmxMmTIlvvjii1i0aFGsWrUqKlWqFLVq1YqWLVvGQQcdFKeeemoceuihJdqP008/Pbp37x5PPfVUvPrqqzFx4sRYtGhRrFixIqpWrRoNGzaMvfbaK4444ojo2rVrtGrVqkSPvzWqVKkSL7/8cjzxxBMxfPjwmDx5cixbtizq1q0be+yxR5x66qnRu3fvqF27dowePXq79qVr167RpUuXePvtt+PVV1+NMWPGxLx582Lx4sWxbt26qFWrVjRu3DjatWsXnTt3jpNOOqlE7ldt27aNadOmxV133RUvvvhizJo1K7Kzs6NRo0Zx7LHHxoUXXhh77733Vtf/y1/+El27do0hQ4bE22+/HfPnz4/y5ctHixYt4pRTTomLLrooatasuc3nsbNp2rRpvP766/Huu+/GM888E2+99VbMmTMnli5dGuXKlYtddtklWrZsGQcffHAcd9xxcdRRR0W5crn/b+TTTjstGdVo3LhxMWXKlPjyyy+Taddq1qwZrVq1isMPPzx69uyZ73VasmRJvPXWWzFmzJiYOHFifPHFF/Htt9/GmjVrokqVKtGoUaPkvnDyySeX6EiHW+O6666LE088MSIixo4dG6NGjYqjjz46V5vSuN+ULVs2/vKXv0T//v3jsccei9dffz0+++yzWLx4caxfvz5q1KgRTZs2jf322y+OPvro6Nq1a9SrVy/PWrvuumu888478dBDD8VTTz0Vn3zySaxatSrq168fe+65Z/z617+Os88+O6pUqRITJkwosF/33ntvXHjhhfH666/H+PHj49NPP42vv/46li9fnnzW9tlnnzjuuOPinHPOSUYoK0hJvL+e1wAAQEREViaTY5xsAAAAyOGoo46KMWPGRETEqFGj4qijjirdDrHDXX311XHzzTdHRMStt94aV1xxRSn3CAAAAABg25Tuf5IDAAAA7LQymUw888wzyXq7du1KsTcAAAAAACVDYAoAAADI06BBg+KLL76IiIiGDRtGp06dSrlHAAAAAADbTmAKAAAAUubZZ5+Nyy67LKZPn57n9mXLlsU111wTl112WfLapZdeGmXLlt1RXQQAAAAA2G7KlXYHAAAAgB1rxYoVceedd8add94ZLVq0iP333z/q1q0b69evj6+++irGjx8fq1atStofc8wx8fvf/74UewwAAAAAUHIEpgAAACDFZsyYETNmzMhzW1ZWVpx99tkxdOjQKFPGINUAAAAAwM+DwBQAAACkzFlnnRX16tWLV155JT744IP49ttvY/HixbFq1aqoWbNmNGnSJI488sjo2bNnHHjggaXdXQAAAACAEpWVyWQypd0JAAAAAAAAAACAHcF4+gAAAAAAAAAAQGoITAEAAAAAAAAAAKkhMAUAAAAAAAAAAKSGwBQAAAAAAAAAAJAaAlMAAAAAAAAAAEBqCEwBAAAAAAAAAACpUa60O8DOYc2aNfHxxx9HRES9evWiXDkfDQAAAAAAAAAASteGDRti0aJFERGx3377RaVKlba5plQMERHx8ccfR/v27Uu7GwAAAAAAAAAAkKcJEyZEu3bttrmOKfkAAAAAAAAAAIDUMMIUEbFpGr7NJkyYELvvvnsp9gYAAAAAAAAAACK++eabZNa0nPmWbSEwRURElCv3/z4Ku+++ezRq1KgUewMAAAAAAAAAALnlzLdsC1PyAQAAAAAAAAAAqSEwBQAAAAAAAAAApIbAFAAAAAAAAAAAkBoCUwAAAAAAAAAAQGoITAEAAAAAAAAAAKkhMAUAAAAAAAAAAKSGwBQAAAAAAAAAAJAaAlMAAAAAAAAAAEBqCEwBAAAAAAAAAACpITAFAAAAAAAAAACkhsAUAAAAAAAAAACQGgJTAAAAAAAAAABAaghMAQAAAAAAAAAAqSEwBQAAAAAAAAAApIbAFAAAAAAAAAAAkBoCUwAAAAAAAAAAQGoITAEAAAAAAAAAAKkhMAUAAAAAAAAAAKSGwBQAAAAAAAAAAJAaAlMAAAAAAAAAAEBqCEwBAAAAAAAAAACpITAFAAAAAAAAAACkhsAUAAAAAAAAAACQGgJTAAAAAAAAAABAaghMAQAAAAAAAAAAqSEwBQAAAAAAAAAApIbAFAAAAAAAAAAAkBoCUwAAAAAAAAAAQGoITAEAAAAAAAAAAKkhMAUAAAAAAAAAAKSGwBQAAAAAAAAAAJAaAlMAAAAAAAAAAEBqCEwBAAAAAAAAAACpITAFAAAAAAAAAACkhsAUAAAAAAAAAACQGgJTAAAAAAAAAABAaghMAQAAAAAAAAAAqSEwBQAAAAAAAAAApIbAFAAAAAAAAAAAkBoCUwAAAAAAAAAAQGoITAEAAAAAAAAAAKkhMAUAAAAAAAAAAKSGwBQAAAAAAAAAAJAaAlMAAAAAAAAAAEBqCEwBAAAAAAAAAACpITAFAAAAAAAAAACkhsAUAAAAAAAAAACQGgJTAAAAAAAAAABAaghMAQAAAAAAAAAAqSEwBQAAAAAAAAAApIbAFAAAAAAAAAAAkBoCUwAAAAAAAAAAQGoITAEAAAAAAAAAAKkhMAUAAAAAAAAAAKRGudLuAFCwZleOLO0u/CzMvrVbaXcBAAAAAAAAANgJGGEKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASI3UBqaysrKK9HfUUUcVWuvll1+OHj16RKNGjaJixYrRqFGj6NGjR7z88stF7s+GDRvigQceiCOOOCLq1asXlStXjubNm0e/fv3i008/3YYzBQAAAAAAAAAANitX2h34KcvOzo4LLrgghg0bluv1efPmxbx582LEiBHRt2/fePDBB6NMmfyzaYsXL46uXbvGxIkTc73+5ZdfxpAhQ2L48OExePDg6Nu373Y5DwAAAAAAAAAASIvUB6b+93//Ny688MJ8t1etWjXfbVdffXUSljrwwAPj8ssvj+bNm8fMmTPj9ttvj8mTJ8dDDz0U9erVi5tvvjnPGhs3bowePXokYalTTjklzj///KhTp0689957ceONN8bChQujX79+0bBhw+jSpcs2nC0AAAAAAAAAAKRb6gNT9evXj3333bfY+02fPj3++te/RkTEwQcfHG+99VZUrlw5IiLatWsXJ598cnTq1Cnef//9uOOOO+K8886LFi1abFFn+PDhMXbs2IiIuPDCC+O+++5LtrVv3z66dOkSBx10UCxbtiwuvvjimDp1apQrl/rLBgAAAAAAAAAAWyX/eeIo0N133x0bNmyIiIh77703CUttVqVKlbj33nsjImLDhg0xaNCgPOtsDl3VqVMn7rjjji22t2jRIv70pz9FRMSMGTPiueeeK7FzAAAAAAAAAACAtBGY2gqZTCaef/75iIho3bp1HHLIIXm2O+SQQ2LPPfeMiIjnn38+MplMru3Tp0+PqVOnRkTE6aefHlWqVMmzTu/evZNlgSkAAAAAAAAAANh6AlNbYdasWTF//vyIiOjUqVOBbTdvnzdvXsyePTvXts1T8RVWZ7fddotWrVpFRMS4ceO2pssAAAAAAAAAAEBElCvtDpS2Z555Jp5++umYPXt2lC1bNnbbbbc47LDDonfv3nH00Ufnuc9nn32WLLdu3brA+jm3T506NX7xi19sdZ3p06fHnDlzYuXKlVG1atUC2//Y3LlzC9z+zTffFKseAAAAAAAAAAD8FKU+MJUztBQRMWPGjJgxY0Y89thj8T//8z/x6KOPRs2aNXO1yRk+atSoUYH1GzdunCzPmTNnm+tkMpmYO3duMtVfUeXsBwAAAAAAAAAApFVqA1NVqlSJk08+OTp37hytW7eOatWqxaJFi2LMmDHxwAMPxJIlS2LEiBHRvXv3+O9//xvly5dP9l2+fHmyXK1atQKPk3MkqBUrVuTaVlJ1AAAAAAAAAACAokltYGrevHlRq1atLV4/9thjo3///tGlS5eYPHlyjBkzJu6///64+OKLkzZr1qxJlitUqFDgcSpWrJgsr169Ote2kqpTFD8e3erHvvnmm2jfvn2x6wIAAAAAAAAAwE9JagNTeYWlNtt1113j2WefjdatW8f69evj3nvvzRWYqlSpUrK8bt26Ao+zdu3aZLly5cq5tv24Ts714tQpisKm/AMAAAAAAAAAgDQoU9od2Fntscceceyxx0ZExIwZM2L+/PnJturVqyfLhU2Pt3LlymT5x9PulVQdAAAAAAAAAACgaASmCrD33nsny/PmzUuWc47WNHfu3AJr5JwKr3Hjxrm2bU2drKwso0UBAAAAAAAAAMBWEpgqQFZWVp6v5wxSTZs2rcAaObfvtdde21yncePGUbVq1QLbAgAAAAAAAAAAeROYKsBnn32WLDdo0CBZ/sUvfpGsjxkzpsAab731VkRENGzYMJo1a5Zr2+GHH54sF1RnwYIFMX369IiI6NixY9E6DwAAAAAAAAAAbEFgKh+zZs2K//73vxER0bx582jYsGGyLSsrK7p37x4Rm0Z+Gj9+fJ41xo8fn4wM1b179y1GrGrVqlUy6tTTTz8dq1atyrPOo48+miz36NFj604IAAAAAAAAAABIZ2DqxRdfjA0bNuS7/dtvv41TTz011q1bFxERF1544RZtLrnkkihbtmxERPTv3z9Wr16da/vq1aujf//+ERFRrly5uOSSS/I81mWXXRYREd99911cfvnlW2yfOXNm3HLLLRER0aJFC4EpAAAAAAAAAADYBuVKuwOloX///rF+/fo49dRT49BDD41mzZpF5cqVY/HixTF69Oh48MEHY/HixRGxadq8iy66aIsarVq1igEDBsStt94a77//fnTs2DGuuOKKaN68ecycOTNuu+22mDx5ckREDBgwIFq2bJlnX3r16hUPP/xwjBs3Lu67775YsGBBnH/++VG7du2YMGFC3HDDDbFs2bIoU6ZM3HPPPVGuXCovGQAAAAAAAAAAlIisTCaTKe1O7GjNmjWLr776qtB2p556ajz00ENRq1atPLdnZ2fH+eefHw8//HC+Nfr06RNDhgyJMmXyH8xr8eLF0bVr15g4cWKe2ytWrBiDBw+Ovn37FtrnrTV37txo3LhxRETMmTMnGjVqtN2ORfE0u3JkaXfhZ2H2rd1KuwsAAAAAAAAAQDFtj0xLKocrGj58eIwZMybefffd+PLLL2Px4sWxbNmyqFatWjRu3DgOO+yw6NWrVxx66KEF1ilTpkwMGzYsTj311BgyZEhMnDgxFi9eHHXr1o127dpFv379okuXLoX2p27duvHOO+/E0KFD44knnoipU6fGypUro0GDBtG5c+f4/e9/H/vss09JnT4AAAAAAAAAAKRWKkeYYktGmNp5GWGqZBhhCgAAAAAAAAB+erZHpiX/eeIAAAAAAAAAAAB+ZgSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYysMVV1wRWVlZyd/o0aML3efll1+OHj16RKNGjaJixYrRqFGj6NGjR7z88stFPu6GDRvigQceiCOOOCLq1asXlStXjubNm0e/fv3i008/3YYzAgAAAAAAAAAAIiLKlXYHdjYffvhh3HXXXUVun52dHRdccEEMGzYs1+vz5s2LefPmxYgRI6Jv377x4IMPRpky+efTFi9eHF27do2JEyfmev3LL7+MIUOGxPDhw2Pw4MHRt2/f4p0QAAAAAAAAAACQMMJUDpvDTxs2bIj69esXaZ+rr746CUsdeOCB8eSTT8aECRPiySefjAMPPDAiIh566KG45ppr8q2xcePG6NGjRxKWOuWUU+Lll1+O9957L+65556oX79+rF27Nvr161esEasAAAAAAAAAAIDcBKZyuOeee2LixInRunXr6NOnT6Htp0+fHn/9618jIuLggw+OcePGxRlnnBHt2rWLM844I8aOHRsHH3xwRETccccdMWPGjDzrDB8+PMaOHRsRERdeeGH8+9//jhNOOCHat28f/fv3j3HjxkWNGjUiOzs7Lr744tiwYUMJnTEAAAAAAAAAAKSLwNT/7+uvv45rr702IiIeeOCBqFChQqH73H333Ul46d57743KlSvn2l6lSpW49957IyJiw4YNMWjQoDzrbA5d1alTJ+64444ttrdo0SL+9Kc/RUTEjBkz4rnnniviWQEAAAAAAAAAADkJTP3/LrroolixYkX06tUrOnXqVGj7TCYTzz//fEREtG7dOg455JA82x1yyCGx5557RkTE888/H5lMJtf26dOnx9SpUyMi4vTTT48qVarkWad3797JssAUAAAAAAAAAABsHYGpiHj66afj//7v/6JOnTrJaE+FmTVrVsyfPz8iotCA1ebt8+bNi9mzZ+fatnkqvsLq7LbbbtGqVauIiBg3blyR+ggAAAAAAAAAAOSW+sDU999/H7///e8jIuK2226LunXrFmm/zz77LFlu3bp1gW1zbt88mtS21JkzZ06sXLmySP0EAAAAAAAAAAD+n3Kl3YHSdvnll8eCBQuiY8eO0adPnyLvN3fu3GS5UaNGBbZt3LhxsjxnzpxtrpPJZGLu3LnJVH/F7W9evvnmmyLXAgAAAAAAAACAn6pUB6befvvteOihh6JcuXLxwAMPRFZWVpH3Xb58ebJcrVq1AttWrVo1WV6xYsV2qVOYnKEtAAAAAAAAAABIq9ROybdu3bq44IILIpPJxB/+8IfYd999i7X/mjVrkuUKFSoU2LZixYrJ8urVq7dLHQAAAAAAAAAAoHCpHWHq5ptvjmnTpkWTJk1i4MCBxd6/UqVKyfK6desKbLt27dpkuXLlygXWyblenDqF+fFUgD/2zTffRPv27YtVEwAAAAAAAAAAfmpSGZiaNm1a3HLLLRERce+99+aa6q6oqlevniwXNj3eypUrk+UfT7v34zoFBaYKqlOYRo0aFas9AAAAAAAAAAD8HKUyMDVo0KBYt25d7LHHHrFq1ap46qmntmjzySefJMtvvvlmLFiwICIiTjrppKhatWquANLcuXMLPF7O0Z0aN26ca9uP69StW7fQOllZWQJQAAAAAAAAAACwFVIZmNo8td2XX34ZZ555ZqHtb7jhhmR51qxZUbVq1dh7772T16ZNm1bg/jm377XXXrm2/bhOmzZtCq3TuHHjrRoVCwAAAAAAAAAA0q5MaXfgp+oXv/hFNGjQICIixowZU2Dbt956KyIiGjZsGM2aNcu17fDDD0+WC6qzYMGCmD59ekREdOzYcWu6DAAAAAAAAAAAqZfKwNSjjz4amUymwL+BAwcm7UeNGpW8vjnwlJWVFd27d4+ITSM/jR8/Ps9jjR8/PhkZqnv37pGVlZVre6tWrZJRp55++ulYtWpVvn3erEePHlt13gAAAAAAAAAAkHapDEyVlEsuuSTKli0bERH9+/eP1atX59q+evXq6N+/f0RElCtXLi655JI861x22WUREfHdd9/F5ZdfvsX2mTNnxi233BIRES1atBCYAgAAAAAAAACArSQwtQ1atWoVAwYMiIiI999/Pzp27Bj/+te/4v33349//etf0bFjx3j//fcjImLAgAHRsmXLPOv06tUrmWbvvvvui9NOOy1effXVmDBhQgwePDgOO+ywWLZsWZQpUybuueeeKFeu3I45QQAAAAAAAAAA+JmRvNlGN910UyxcuDAefvjhmDx5cpxxxhlbtOnTp0/ceOON+dYoW7ZsjBgxIrp27RoTJ06Mf//73/Hvf/87V5uKFSvG4MGDo0uXLiV+DgAAAAAAAAAAkBZGmNpGZcqUiWHDhsXIkSOje/fu0aBBg6hQoUI0aNAgunfvHi+99FI89NBDUaZMwW913bp145133om///3vcfjhh8cuu+wSlSpVij322CPOP//8mDRpUvTt23cHnRUAAAAAAAAAAPw8ZWUymUxpd4LSN3fu3GjcuHFERMyZMycaNWpUyj1is2ZXjiztLvwszL61W2l3AQAAAAAAAAAopu2RaTHCFAAAAAAAAAAAkBoCUwAAAAAAAAAAQGoITAEAAAAAAAAAAKkhMAUAAAAAAAAAAKSGwBQAAAAAAAAAAJAaAlMAAAAAAAAAAEBqCEwBAAAAAAAAAACpITAFAAAAAAAAAACkhsAUAAAAAAAAAACQGgJTAAAAAAAAAABAaghMAQAAAAAAAAAAqSEwBQAAAAAAAAAApIbAFAAAAAAAAAAAkBoCUwAAAAAAAAAAQGoITAEAAAAAAAAAAKkhMAUAAAAAAAAAAKSGwBQAAAAAAAAAAJAaAlMAAAAAAAAAAEBqCEwBAAAAAAAAAACpITAFAAAAAAAAAACkhsAUAAAAAAAAAACQGgJTAAAAAAAAAABAaghMAQAAAAAAAAAAqSEwBQAAAAAAAAAApIbAFAAAAAAAAAAAkBoCUwAAAAAAAAAAQGoITAEAAAAAAAAAAKkhMAUAAAAAAAAAAKSGwBQAAAAAAAAAAJAaAlMAAAAAAAAAAEBqCEwBAAAAAAAAAACpITAFAAAAAAAAAACkhsAUAAAAAAAAAACQGgJTAAAAAAAAAABAaghMAQAAAAAAAAAAqSEwBQAAAAAAAAAApIbAFAAAAAAAAAAAkBoCUwAAAAAAAAAAQGoITAEAAAAAAAAAAKkhMAUAAAAAAAAAAKSGwBQAAAAAAAAAAJAaAlMAAAAAAAAAAEBqCEwBAAAAAAAAAACpITAFAAAAAAAAAACkhsAUAAAAAAAAAACQGgJTAAAAAAAAAABAaghMAQAAAAAAAAAAqSEwBQAAAAAAAAAApIbAFAAAAAAAAAAAkBoCUwAAAAAAAAAAQGoITAEAAAAAAAAAAKkhMAUAAAAAAAAAAKSGwBQAAAAAAAAAAJAaAlMAAAAAAAAAAEBqCEwBAAAAAAAAAACpITAFAAAAAAAAAACkhsAUAAAAAAAAAACQGgJTAAAAAAAAAABAaghMAQAAAAAAAAAAqSEwBQAAAAAAAAAApIbAFAAAAAAAAAAAkBoCUwAAAAAAAAAAQGoITAEAAAAAAAAAAKkhMAUAAAAAAAAAAKSGwBQAAAAAAAAAAJAaAlMAAAAAAAAAAEBqCEwBAAAAAAAAAACpITAFAAAAAAAAAACkRrnS7gDAT1GzK0eWdhd+Fmbf2q20uwAAAAAAAABAyhhhCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAAAAAAAAACA1BKYAAAAAAAAAAIDUEJgCAAAAAAAAAABSQ2AKAAAAAAAAAABIDYEpAAAAAAAAAAAgNQSmAAAAAAAAAACA1BCYAgAAAAAAAAAAUkNgCgAAAAAAAAAASA2BKQAAAAAAAAAAIDUEpgAAAAAAAAAAgNQQmAIAAAAAAAAAAFJDYAoAAAAAAAAAAEgNgSkAAACA/4+9e4/Wuqzz//+6YYscRFEJFUUxEVGnMUYxS/FsJVYInptKUjxkHljfPNDJtLIkNRuPqeAgU9KoiGTo5KTmAQ+AQ0WjRqIYRwkxQUVxw/37wx97IE4bhHvnvh6PtVzrw/5c9/V5397/Ptf1AQAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKUfNg6sorr8zcuXNr/VgAAAAAAAAAAIDaB1MXXnhhunTpkn79+uXee+/N0qVLaz0CAAAAAAAAAABQqCZ5Jd+7776bX/7ylzn66KOz/fbb56KLLsrzzz/fFKMAAAAAAAAAAAAFqXkwNXny5AwaNCgdO3ZMtVrNK6+8kiuvvDJ77rlnPvGJT2TYsGF54403aj0WAAAAAAAAAABQgJoHU3vuuWd+/OMfZ+bMmbn77rvz2c9+Ni1btky1Ws3TTz+d008/Pdttt12+/OUv59FHH631eAAAAAAAAAAAQDPWJK/kS5K6urocffTRGTNmTGbMmJEf/ehH2X333VOtVvPmm29mxIgROeSQQ9K9e/f88Ic/zKxZs5pqVAAAAAAAAAAAoJlosmBqeZ06dcr555+fP/7xj3nqqady+umnZ/PNN0+1Ws0LL7yQb33rW9lpp53Sp0+fjBo1Ku+++25TjwwAAAAAAAAAAHwA/UMEU8vbd99989Of/jSzZ8/OiBEjsu2226ZarWbJkiX59a9/neOPPz7bb799Bg8enDlz5jT1uAAAAAAAAAAAwAfIP1wwlSQvv/xyhgwZkosvvjivvPJKKpVKkqRaraZarWbevHm54oorsssuu+Tqq69u4mkBAAAAAAAAAIAPin+YYOrtt9/Oz372sxx22GHZZZdd8t3vfjfTpk1LtVrNrrvumiFDhmTWrFl54IEHcsIJJ6Rly5ZZtGhRzj///PzsZz9bp2ctWLAgv/jFL/K1r30tBx10ULp165YtttgirVq1SqdOnXLwwQfnRz/6UV599dVG7ffEE0/kC1/4Qnbaaae0bt062267bT71qU9l5MiR6zTXyJEj88lPfjLbbrttWrdunZ122ilf+MIX8uSTT67TPgAAAAAAAAAAwKpVqtVqtSkHePLJJ/Pv//7vueOOO7Jw4cIk750k1aZNmxx77LEZOHBgevfuvdLnpk6dmmOPPTa///3v07NnzzzzzDONfuZvfvObHHHEEWtd17Fjx/zsZz/Lpz71qdWuueSSS/K9730vS5cuXeX9o446KnfddVdat2692j0WLVqUY489Nvfdd98q77do0SIXX3xxvvOd76x15vU1Y8aMdOnSJUkyffr07LDDDhvtWaybroPHNvUIzcK0y4/aoPv5XTaMDf27AAAAAAAAANC8bIympe5977AeZs+enREjRmT48OGZMmVKkvciqSTp2bNnBg4cmH/913/N5ptvvto9dtlllwwZMiSf/vSnG/ZYF126dMkhhxySvffeO126dMl2222XpUuXZsaMGbnrrrty9913Z968efnc5z6X8ePHZ6+99lppj5tuuimXXnppwzzf+MY38pGPfCSzZs3Kv/3bv+Xhhx/O2LFjc8opp+T2229f7SynnHJKQyx1yCGH5Lzzzkvnzp0zefLk/OAHP8jUqVNzySWXZLvttsvpp5++zt8VAAAAAAAAAAB4T81PmOrTp0/++7//O0uXLm2IpLbYYot8/vOfz8CBA9OzZ89G7/XCCy+ke/fuqVQqWbJkSaM/t2TJkrRs2XKNa+65557069cvSdKvX7/cfffdK9yfP39+PvzhD+f111/PjjvumGeeeSYdO3Zc4Rn9+vXLvffemyR5+OGHc/DBB6/0nIceeiiHHXZYkuSzn/1sRo8evcJs8+bNy957752//OUv6dChQ1588cVsueWWjf6ujeWEqX9cTjLaMJww9Y/JCVMAAAAAAAAArMnGaFpavO8d1tF//dd/ZcmSJalWq+ndu3duu+22zJ49O9dff/06xVJJ0rZt2xx44IE58MAD1+lza4ulkuToo4/ObrvtliR57LHHVro/dOjQvP7660mSIUOGrBBLLXvGDTfc0PCsK664YpXPufLKK5MkdXV1K6xfpmPHjhkyZEiS5G9/+1uGDh261tkBAAAAAAAAAIBVq3kw1alTp1xwwQX505/+lEceeSRf/OIX07p16/Xaq3Pnzvntb3+bhx9+eANP+Z727dsnSd5+++2V7t1zzz1Jks033zz9+/df5ed32GGHHH744UmSBx98MAsXLlzh/sKFC/Pggw8mSQ4//PDVFnD9+/dveD3h6NGj1/2LAAAAAAAAAAAASZogmJoxY0aGDBmSXXfdtdaPXid/+tOf8rvf/S5J0qNHjxXuLV68OOPHj0+SfPzjH0+rVq1Wu89BBx2UJHnnnXcyceLEFe5NmDAhixcvXmHdqrRq1Sr77bdfw2fefffddfsyAAAAAAAAAABAkqSu5g+sq/kjG+2tt97KzJkzc++99+ZHP/pR6uvrkySDBg1aYd2UKVOyZMmSJCvHVH9v+fvPPfdcDjnkkIZ/P/vss6tct7p9HnjggdTX1+fPf/5z9thjj0Z9p2VmzJixxvuzZ89ep/0AAAAAAAAAAOCDqOb1Un19fZ544okkyV577ZUttthijev/9re/5Q9/+EOSpHfv3qlUKht0nuHDh+fLX/7yau8PHjw4n//851f42/Lx0epeo7dMly5dGq6nT5++wfZZ12Bq+c8DAAAAAAAAAECpah5MjRkzJscdd1y23nrrvPzyy2td36pVq/Tv3z+vvfZaxowZk8985jM1mDL56Ec/mptvvjm9evVa6d7ChQsbrjfbbLM17tOuXbuG6zfeeGOj7AMAAAAAAAAAADROi1o/cPTo0UmS4447Lm3btl3r+rZt2+aEE05ItVrNqFGjNvg8Rx99dCZPnpzJkydn/PjxGTlyZPr165ff/e53Oemkk/KrX/1qpc+8/fbbDdetWrVa4/6bbrppw/WiRYs2yj6NMX369DX+N378+HXeEwAAAAAAAAAAPmhqfsLUhAkTUqlUcuihhzb6M4ceemhuvPHGPPXUUxt8ng4dOqRDhw4N/+7Vq1dOPPHE/Md//EdOPvnk9O3bN8OGDcuAAQMa1rRu3brhevHixWvc/5133mm4btOmzQr3NtQ+jbG2V/4BAAAAAAAAAEAJan7C1PTp05MkO++8c6M/07Vr1xU+Wwtf/OIXc9xxx2Xp0qU5++yzM3/+/IZ77du3b7he2+vx3nzzzYbrv3/t3obaBwAAAAAAAAAAaJyaB1PLVKvVdV5bX1+/scZZpb59+yZ5L1b6r//6r4a/L39a04wZM9a4x/KRV5cuXVa4t6H2AQAAAAAAAAAAGqfmwdSHPvShJMnzzz/f6M8sW9uxY8eNMtPqLJs1SV5++eWG6+7du6dly5YrzLY6y9/ffffdV7i3xx57rHLdmvapq6vLrrvuupbJAQAAAAAAAACAVal5MNWrV69Uq9WMGDGi0Z8ZPnx4KpVK/uVf/mUjTraymTNnNlwv/xq8Vq1aZd99902SPPnkk1m8ePFq93jkkUeSJJtuumn22WefFe716tUrrVq1WmHdqixevDhPPfVUw2c22WSTdfwmAAAAAAAAAABA0gTB1LHHHpskefDBB3PVVVetdf1VV12Vhx56KEly3HHHbdTZ/t6dd97ZcP2Rj3xkhXtHH310kmTBggW5++67V/n5GTNm5De/+U2S5LDDDkv79u1XuN++ffscdthhSZLf/OY3q30t3913350FCxYkSfr167fuXwQAAAAAAAAAAEjSBMHUCSeckL322ivVajUXXnhhjj322Dz++OOpr69vWFNfX5/HHnssxxxzTC688MJUKpX80z/9U77whS9skBmGDx+et99+e41rrr766tx3331Jkp133jm9e/de4f7AgQOzxRZbJEkGDx6cV199dYX7S5YsyVlnnZUlS5YkSS644IJVPuf8889P8t53/upXv9qwfpl58+bloosuSpJ06NAhAwcObMxXBAAAAAAAAAAAVqGu1g+sVCoZPXp09t9//8yePTujR4/O6NGjs8kmm2SrrbZKksyfPz/vvvtukqRaraZz584ZM2ZMKpXKBpnhkksuyde+9rUcc8wxOeCAA7LLLrtks802y8KFCzN58uT8/Oc/z7hx45K89/q9m2++OS1btlxhj6222ipDhgzJmWeemZdffjkf+9jH8s1vfjMf+chHMmvWrPzkJz/Jww8/nCQ56aSTcvDBB69ylkMPPTQnnnhifvGLX+SXv/xljjjiiAwaNCidO3fO5MmTc9lll+Uvf/lLkmTIkCHZcsstN8j/AwAAAAAAAAAAKFHNg6kk6dq1ayZNmpQzzzwzY8aMSbVazeLFizNnzpwV1lUqlfTv3z833HBDOnXqtEFnmD9/fm655Zbccsstq12zww475NZbb83hhx++yvtnnHFGZs2ale9973uZOnVqTjnllJXW9OnTJ7feeusaZ7n11luzYMGC3HfffXn44YcbQqtlWrRokW9/+9s5/fTTG/HNAAAAAAAAAACA1WmSYCpJOnXqlLvvvjtTpkzJ2LFjM2nSpMybNy9J0rFjx/zLv/xLjjrqqOy6664b/Nm//vWvM3bs2IwbNy4vvPBCXnnllbz66qtp06ZNOnXqlI9+9KP5zGc+k+OPPz5t27Zd416XXnppPvWpT+X666/PY489lldeeSUdOnTIXnvtlS9/+cs56aST1jpPmzZtMnbs2Nx+++0ZPnx4fv/73+dvf/tbttlmm/Tu3Ttnn312Pv7xj2+orw8AAAAAAAAAAMWqVKvValMPQdObMWNGunTpkiSZPn16dthhhyaeiGW6Dh7b1CM0C9MuP2qD7ud32TA29O8CAAAAAAAAQPOyMZqWFu97BwAAAAAAAAAAgA8IwRQAAAAAAAAAAFCMuqZ8+NKlS/Pss8/mxRdfzMKFC7NkyZK1fuZLX/pSDSYDAAAAAAAAAACaoyYJphYtWpTvf//7ueWWW/Lqq682+nOVSkUwBQAAAAAAAAAArLeaB1OLFi3KoYcemvHjx6dardb68QAAAAAAAAAAQMFqHkxdffXVefrpp5Mk//RP/5Szzz47e++9d7baaqu0aNGi1uMAAAAAAAAAAAAFqXkw9Z//+Z9Jkk984hN56KGH0qpVq1qPAAAAAAAAAAAAFKrmRzpNnTo1lUolF154oVgKAAAAAAAAAACoqZoHU8siqR133LHWjwYAAAAAAAAAAApX82CqR48eSZI5c+bU+tEAAAAAAAAAAEDhah5MDRgwINVqNXfeeWetHw0AAAAAAAAAABSu5sHUaaedlkMPPTQjRozIyJEja/14AAAAAAAAAACgYHW1fuD06dNz7bXX5rTTTssXvvCFjB49Op///OfTo0ePtG3bdq2f33HHHWswJQAAAAAAAAAA0BzVPJjq2rVrKpVKkqRarWbUqFEZNWpUoz5bqVRSX1+/MccDAAAAAAAAAACasZoHU8l7odSqrgEAAAAAAAAAADammgdT//7v/17rRwIAAAAAAAAAACRpgmDq5JNPrvUjAQAAAAAAAAAAkiQtmnoAAAAAAAAAAACAWhFMAQAAAAAAAAAAxaj5K/mWt3Tp0jz88MN58sknM2fOnLz11lu57LLLst122zWsWbx4cerr69OyZctsuummTTgtAAAAAAAAAADwQddkwdSvfvWrnHvuuXn55ZdX+Pv555+/QjA1dOjQnHPOOdlss80ya9astGvXrtajAgAAAAAAAAAAzUSTvJLvlltuSd++fTNt2rRUq9VsvfXWqVarq1w7cODAbLHFFnnjjTcyevToGk8KAAAAAAAAAAA0JzUPpv785z/nq1/9apLk0EMPzbPPPpu5c+eudn2rVq1yzDHHpFqt5oEHHqjVmAAAAAAAAAAAQDNU82Dq6quvTn19ffbcc8/cd9996dGjx1o/07t37yTJpEmTNvZ4AAAAAAAAAABAM1bzYOqhhx5KpVLJoEGD0qpVq0Z9plu3bkmS6dOnb8zRAAAAAAAAAACAZq7mwdSMGTOSJHvttVejP9OuXbskyVtvvbVRZgIAAAAAAAAAAMpQ82CqUqkkWbf46dVXX02SbLHFFhtlJgAAAAAAAAAAoAw1D6a23377JMmLL77Y6M88/vjjSZIPf/jDG2UmAAAAAAAAAACgDDUPpg4++OBUq9XcdtttjVr/+uuv56c//WkqlUoOPfTQjTwdAAAAAAAAAADQnNU8mDrjjDNSqVTyyCOPZPjw4Wtc++qrr+boo4/OnDlzUldXlzPPPLM2QwIAAAAAAAAAAM1SzYOpnj175rzzzku1Ws2pp56aE044IXfccUfD/SeeeCK33357vvrVr6Zbt2559NFHU6lU8u1vfzs77bRTrccFAAAAAAAAAACakbqmeOhVV12Vd955JzfeeGPuuuuu3HXXXalUKkneO4FqmWq1miQZNGhQvvWtbzXFqAAAAAAAAAAAQDNS8xOmkqRSqeT666/Pr3/96xx88MGpVCqpVqsr/JckH//4xzN27Nj8+Mc/booxAQAAAAAAAACAZqZJTpha5ogjjsgRRxyRhQsXZtKkSZk7d26WLFmSrbfeOh/96EfTsWPHphwPAAAAAAAAAABoZpo0mFqmffv2OfDAA5t6DAAAAAAAAAAAoJlrklfyAQAAAAAAAAAANAXBFAAAAAAAAAAAUIyav5LvlFNOWe/PViqVDBs2bANOAwAAAAAAAAAAlKTmwdTw4cNTqVTW+XPValUwBQAAAAAAAAAAvC81D6Z23HHHtQZTb775Zl599dWGSKpjx45p27ZtjSYEAAAAAAAAAACaq5oHU9OmTWvUutdeey0jR47MxRdfnA4dOuSXv/xldtttt407HAAAAAAAAAAA0Ky1aOoBVmfLLbfMWWedlXHjxmXu3Lk58sgj89prrzX1WAAAAAAAAAAAwAfYP2wwtcxuu+2Wc889N9OmTctVV13V1OMAAAAAAAAAAAAfYP/wwVSSHH744UmSu+++u4knAQAAAAAAAAAAPsg+EMHUZpttliT5y1/+0sSTAAAAAAAAAAAAH2QfiGBq0qRJSZJNNtmkiScBAAAAAAAAAAA+yP7hg6mXXnopl1xySSqVSj760Y829TgAAAAAAAAAAMAHWF2tHzhixIi1rlm6dGlee+21TJw4MWPGjMlbb72VSqWSM888swYTAgAAAAAAAAAAzVXNg6kBAwakUqk0en21Wk2SnHvuuTnhhBM21lgAAAAAAAAAAEABah5MJf8XQa1Nhw4dcuCBB+ass87KJz/5yY08FQAAAAAAAAAA0NzVPJh66aWX1rqmRYsWad++fTp06LDxBwIAAAAAAAAAAIpR82Bqp512qvUjAQAAAAAAAAAAkiQtmnoAAAAAAAAAAACAWhFMAQAAAAAAAAAAxRBMAQAAAAAAAAAAxair9QNbtmy5wfesVCqpr6/f4PsCAAAAAAAAAADNS82DqWq1WutHAgAAAAAAAAAAJGmCYOo73/lOkmTs2LGZOHFikmTPPffMvvvum2222SZJ8sorr2TChAn54x//mEqlkn322Sd9+vSp9agAAAAAAAAAAEAz0yTB1He/+91MnDgxe+21V26++eb06tVrlWsnTJiQM844IxMnTsxRRx2Viy++uMbTAgAAAAAAAAAAzUmLWj/wwQcfzCWXXJLu3bvn8ccfX20slSS9evXKY489lm7duuXSSy/Nb37zmxpOCgAAAAAAAAAANDc1D6auueaaVCqVDB48OO3atVvr+nbt2mXw4MGpVqu59tprazAhAAAAAAAAAADQXNU8mJo4cWKS5J//+Z8b/Zm99toryXuv6AMAAAAAAAAAAFhfNQ+m5s+fnyR5/fXXG/2ZBQsWJElee+21jTITAAAAAAAAAABQhpoHU507d06SjBo1qtGfueuuu5Ik22233UaZCQAAAAAAAAAAKEPNg6lPf/rTqVaruemmm3LHHXesdf1dd92Vm266KZVKJX369KnBhAAAAAAAAAAAQHNVV+sHfuMb38jPf/7zLFy4MCeddFJuv/32DBgwIL169UqnTp1SqVTyyiuvZMKECbntttvyy1/+MtVqNZtvvnm+/vWv13pcAD5gug4e29QjNAvTLj+qqUcAAAAAAAAA2ChqHkxtv/32uffee/PZz342CxYsyL333pt77713teur1Wrat2+fMWPGZPvtt6/hpAAAAAAAAAAAQHNT81fyJUnv3r0zefLkHHPMMWnRokWq1eoq/2vRokX69++fP/zhDznooIOaYlQAAAAAAAAAAKAZqfkJU8t06dIld955Z1555ZU8/PDDmTx5cubPn58k2XLLLfORj3wkhxxySLbddtumGhEAAAAAAAAAAGhmmiyYWmabbbbJiSeemBNPPLGpRwEAAAAAAAAAAJq5JnklHwAAAAAAAAAAQFNo8hOmFi1alGeeeSZz5szJW2+9laOPPjqbb755U48FAAAAAAAAAAA0Q00WTE2fPj3f+MY3cuedd+bdd99t+Ps+++yTPfbYo+Hfw4YNy0033ZQtttgiDzzwQCqVSlOMCwAAAAAAAAAANANN8kq+p59+Oj179sztt9+exYsXp1qtplqtrnLtZz/72fzhD3/IQw89lAceeKDGkwIAAAAAAAAAAM1JzYOpv/3tb+nbt2/mz5+fbbfdNjfccEMmT5682vWdOnXKkUcemSQZO3ZsrcYEAAAAAAAAAACaoZq/ku+aa67J3Llz07Fjxzz55JPZcccd1/qZww8/PGPGjMn48eNrMCEAAAAAAAAAANBc1fyEqXvvvTeVSiX/7//9v0bFUkmy5557JkmmTp26MUcDAAAAAAAAAACauZoHUy+88EKS5MADD2z0Z7bccsskyYIFCzbKTAAAAAAAAAAAQBlqHky9/fbbSZJNNtmk0Z958803kyRt2rTZKDMBAAAAAAAAAABlqHkw1alTpyTJSy+91OjP/O53v0uSdO7ceWOMBAAAAAAAAAAAFKLmwdTHPvaxJMn999/fqPXVajW33HJLKpVKevfuvTFHAwAAAAAAAAAAmrmaB1P/+q//mmq1mp///OcNJ0etyde+9rX8/ve/T5KcfPLJG3k6AAAAAAAAAACgOat5MNW3b98ccsghqa+vz2GHHZYbb7wxc+fObbhfX1+fWbNm5c4770zv3r3zb//2b6lUKunfv38+8YlP1HpcAAAAAAAAAACgGalrioeOGjUqhx12WCZNmpSzzz47Z599diqVSpKkZ8+eK6ytVqvZb7/9Mnz48CaYFAAAAAAAAAAAaE5qfsJUknTo0CFPPvlkvv71r2fzzTdPtVpd5X9t2rTJhRdemN/+9rdp165dU4wKAAAAAAAAAAA0I01ywlSStGrVKpdddlm+8Y1v5JFHHsnEiRMzd+7cLFmyJFtvvXV69uyZww8/PFtssUVTjQgAAAAAAAAAADQzNQ+mRowYkSTZbbfd8rGPfSzt2rVLnz590qdPn1qPAgAAAAAAAAAAFKbmr+QbMGBAvvzlL+fll1+u9aMBAAAAAAAAAIDC1TyYWvaKvV133bXWjwYAAAAAAAAAAApX82Bq5513TpK89tprtX40AAAAAAAAAABQuJoHU/369Uu1Ws29995b60cDAAAAAAAAAACFq3kwdd5552WnnXbKjTfemAcffLDWjwcAAAAAAAAAAApW82Bq8803z3//93+nR48e+fSnP53TTz89v/3tbzN//vxUq9VajwMAAAAAAAAAABSkrtYPbNmyZcN1tVrNsGHDMmzYsEZ9tlKppL6+fmONBgAAAAAAAAAANHM1D6b+/hQpp0oBAAAAAAAAAAC1UvNg6jvf+U6tHwkAAAAAAAAAAJBkIwdTI0aMSJIcffTR2XzzzZMIpgAAAAAAAAAAgKazUYOpAQMGpFKpZJ999skee+yx0v2//vWvufHGG1OpVPLtb397Y44CAAAAAAAAAABQ+1fyLW/u3Lm55JJLBFMAAAAAAAAAAEBNtGjqAQAAAAAAAAAAAGpFMAUAAAAAAAAAABRDMAUAAAAAAAAAABRDMAUAAAAAAAAAABRDMAUAAAAAAAAAABRDMAUAAAAAAAAAABSjrhYPueGGG9KpU6eV/j537tyG6+9+97uN2uviiy/eYHMBAAAAAAAAAABlqUkwdeONN672XqVSSZJceumljdpLMAUAAAAAAAAAAKyvjR5MVavVDbbXsrgKAAAAAAAAAABgfWzUYOrhhx/emNsDAAAAAAAAAACsk40aTB100EEbc3sAAAAAAAAAAIB10qKpBwAAAAAAAAAAAKgVwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFAMwRQAAAAAAAAAAFCMuqYeoKlMnDgx9913Xx5//PE8++yz+etf/5pNNtkknTt3zv77759TTz01BxxwQKP3u//++3PzzTdnwoQJ+etf/5oPfehD6dWrV04//fQceeSRjdqjvr4+Q4cOzc9//vM8//zzeeONN9K5c+ccfvjhOffcc7Pnnnuu79cFgCbVdfDYph6hWZh2+VFNPQIAAAAAAAB84BUZTB144IF57LHHVvr74sWL8+c//zl//vOfM3z48HzpS1/KLbfcklatWq12r6VLl+b000/PsGHDVvj7zJkzM3PmzNxzzz0ZOHBgbrrpprRosfoDvebNm5c+ffpkwoQJK/z9xRdfzM0335zbbrst1113XQYOHLiO3xYAAAAAAAAAAFimyFfyzZo1K0nSuXPnnHfeebnrrrsyfvz4PPnkk/nxj3+c7bffPkkyYsSIDBgwYI17ffOb32yIpXr27JmRI0dm/PjxGTlyZHr27JkkGTp0aL71rW+tdo8lS5akX79+DbFU//79c//99+fpp5/ONddck06dOuWdd97JGWeckfvvv//9fn0AAAAAAAAAAChWkSdM9ejRIz/4wQ9yzDHHpGXLlivc22+//fLFL34x+++/f6ZMmZKRI0fmzDPPzIEHHrjSPlOmTMmVV16ZJNlnn33y6KOPpk2bNkmSXr165XOf+1wOOuigTJw4MVdccUVOOeWUdOvWbaV9brvttjz++ONJkrPOOivXX399w7199903Rx55ZPbee+8sWLAg5557bp577rnU1RX50wEAAAAAAAAAwPtS5AlTv/rVr3L88cevFEst07Fjx1x11VUN/77rrrtWue4nP/lJ6uvrkyTXXnttQyy1TNu2bXPttdcmSerr63P11Vevcp9l0dVWW22VK664YqX73bp1y9e//vUkyQsvvJDRo0ev6esBAAAAAAAAAACrUWQw1RiHHHJIw/XUqVNXul+tVjNmzJgk751Ytd9++61yn/322y+77bZbkmTMmDGpVqsr3J8yZUqee+65JMnxxx+ftm3brnKf5V8NKJgCAAAAAAAAAID1I5hajXfeeafhelUnUb300kuZNWtWkuSggw5a417L7s+cOTPTpk1b4d6yV/GtbZ9tt9023bt3T5KMGzduzcMDAAAAAAAAAACrVNfUA/yjeuSRRxqud99995XuP/vssw3XPXr0WONey99/7rnnsvPOO6/3PlOmTMn06dPz5ptvpl27dmtcv7wZM2as8f7s2bMbvRcAAAAAAAAAAHxQCaZWYenSpbn88ssb/n388cevtGb5AGmHHXZY435dunRpuJ4+ffr73qdarWbGjBkNr/prjOVnAAAAAAAAAACAUnkl3ypcffXVGT9+fJKkf//+2XvvvVdas3DhwobrzTbbbI37LX8S1BtvvLFR9gEAAAAAAAAAANbOCVN/55FHHsngwYOTJJ06dcqNN964ynVvv/12w3WrVq3WuOemm27acL1o0aKNss/a/P3JVn9v9uzZ2XfffddpTwAAAAAAAAAA+KARTC3nf//3f9OvX7/U19endevWufPOO9OpU6dVrm3dunXD9eLFi9e47zvvvNNw3aZNmzXus/y/12WftVnb6/4AAAAAAAAAAKAEXsn3/3vppZfyyU9+Mq+99lpatmyZX/ziFznwwANXu759+/YN12t7Pd6bb77ZcP33r93bUPsAAAAAAAAAAABrJ5hKMmvWrBx++OGZNWtWKpVKbr311vTt23eNn1n+xKYZM2asce3yr8Pr0qXL+96nUqk4MQoAAAAAAAAAANZD8cHUvHnzcsQRR+TFF19Mklx77bX50pe+tNbP7bHHHg3Xzz///BrXLn9/9913f9/7dOnSJe3atVvrjAAAAAAAAAAAwIqKDqZef/31fOpTn8qzzz6bJLn88svz1a9+tVGf3XnnndO5c+ckySOPPLLGtY8++miSZPvtt0/Xrl1XuHfAAQc0XK9pnzlz5mTKlClJkv33379RMwIAAAAAAAAAACsqNph66623ctRRR+V//ud/kiTf/OY3c9FFFzX685VKpeG1fc8//3yeeuqpVa576qmnGk6G6tu3byqVygr3u3fv3nDq1B133JG33nprlfsMHz684bpfv36NnhMAAAAAAAAAAPg/RQZTixcvTr9+/TJu3LgkyXnnnZfvf//767zPoEGD0rJlyyTJOeeck0WLFq1wf9GiRTnnnHOSJHV1dRk0aNAq9zn//POTJPPnz8+FF1640v2pU6fmhz/8YZKkW7dugikAAAAAAAAAAFhPdU09QFM46aST8sADDyRJDj300Jx66qn54x//uNr1rVq1Svfu3Vf6e/fu3XPBBRfk8ssvz8SJE7P//vvnoosuyi677JKpU6dmyJAhmTRpUpLkggsuyK677rrK/U8++eTceuutGTduXK6//vrMmTMnp512WrbccsuMHz8+3/ve97JgwYK0aNEi11xzTerqivzZAAAAAAAAAADgfSuyvLn77rsbrh966KH88z//8xrX77TTTpk2bdoq71122WWZO3dubr311kyaNCknnnjiSmtOPfXUNZ5g1bJly9xzzz3p06dPJkyYkFGjRmXUqFErrNl0001z3XXX5cgjj1zjrAAAAAAAAAAAwOoV+Uq+DalFixYZNmxYxo4dm759+6Zz585p1apVOnfunL59++a+++7L0KFD06LFmv9Xd+zYMU888URuuOGGHHDAAdl6663TunXrfPjDH85pp52WZ555JgMHDqzRtwIAAAAAAAAAgOapyBOmqtXqBt+zT58+6dOnz/vao66uLl/5ylfyla98ZQNNBQAAAAAAAAAALM8JUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDEEUwAAAAAAAAAAQDHqmnoAAACaRtfBY5t6hGZh2uVHbfA9/TYbxsb4bQAAAAAAgA8+J0wBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFEEwBAAAAAAAAAADFqGvqAQAAAD4Iug4e29QjNAvTLj+qqUcAAAAAAKBwTpgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKIZgCAAAAAAAAAACKUdfUAwAAAMD66jp4bFOP0CxMu/yoDb6n32bD2Bi/DQAAAACUzglTAAAAAAAAAABAMQRTAAAAAAAAAABAMQRTAAAAAAAAAABAMQRTAAAAAAAAAABAMQRTAAAAAAAAAABAMQRTAAAAAAAAAABAMQRTAAAAAAAAAABAMQRTAAAAAAAAAABAMQRTAAAAAAAAAABAMQRTAAAAAAAAAABAMeqaegAAAAAAaqPr4LFNPUKzMO3yo5p6BAAAAADeBydMAQAAAAAAAAAAxRBMAQAAAAAAAAAAxRBMAQAAAAAAAAAAxRBMAQAAAAAAAAAAxRBMAQAAAAAAAAAAxRBMAQAAAAAAAAAAxRBMAQAAAAAAAAAAxRBMAQAAAAAAAAAAxRBMAQAAAAAAAAAAxRBMAQAAAAAAAAAAxRBMAQAAAAAAAAAAxRBMAQAAAAAAAAAAxahr6gEAAAAAoGRdB49t6hGahWmXH7XB9/TbbBgb47cBAACA96PYE6bmzp2bX/3qV7n44otz5JFHpmPHjqlUKqlUKhkwYMA673f//fenX79+2WGHHbLppptmhx12SL9+/XL//fc3eo/6+vr89Kc/Te/evfOhD30obdq0yS677JIzzjgj//u//7vOMwEAAAAAAAAAACsq9oSpbbbZZoPss3Tp0px++ukZNmzYCn+fOXNmZs6cmXvuuScDBw7MTTfdlBYtVt+nzZs3L3369MmECRNW+PuLL76Ym2++Obfddluuu+66DBw4cIPMDQAAAADwQeTkrw1jQ5/85XfZMJzIBgAAtVHsCVPL23HHHfPJT35yvT77zW9+syGW6tmzZ0aOHJnx48dn5MiR6dmzZ5Jk6NCh+da3vrXaPZYsWZJ+/fo1xFL9+/fP/fffn6effjrXXHNNOnXqlHfeeSdnnHHGOp1YBQAAAAAAAAAArKjYE6Yuvvji9OrVK7169co222yTadOmZeedd16nPaZMmZIrr7wySbLPPvvk0UcfTZs2bZIkvXr1yuc+97kcdNBBmThxYq644oqccsop6dat20r73HbbbXn88ceTJGeddVauv/76hnv77rtvjjzyyOy9995ZsGBBzj333Dz33HOpqyv2pwMAAAAAAAAAgPVW7AlTl156aT7zmc+8r1fz/eQnP0l9fX2S5Nprr22IpZZp27Ztrr322iRJfX19rr766lXusyy62mqrrXLFFVesdL9bt275+te/niR54YUXMnr06PWeGQAAAAAAAAAASuaYovVUrVYzZsyYJEmPHj2y3377rXLdfvvtl9122y1/+tOfMmbMmFx33XWpVCoN96dMmZLnnnsuSXL88cenbdu2q9xnwIABDdHU6NGjc9xxx23IrwMAAAAAADRDXQePbeoRmoVplx/V1CMAALABFXvC1Pv10ksvZdasWUmSgw46aI1rl92fOXNmpk2btsK9Za/iW9s+2267bbp3754kGTdu3PqMDAAAAAAAAAAAxXPC1Hp69tlnG6579OixxrXL33/uueey8847r/c+U6ZMyfTp0/Pmm2+mXbt2jZ53xowZa7w/e/bsRu8FAAAAAADA+nPy14axoU/+8rtsGBvjRDa/zYbhtDyA/yOYWk/LB0g77LDDGtd26dKl4Xr69Onve59qtZoZM2Zkt912a/S8y88AAAAAAAAAAACl8kq+9bRw4cKG680222yNa5c/CeqNN97YKPsAAAAAAAAAAABr54Sp9fT22283XLdq1WqNazfddNOG60WLFm2Ufdbm70+2+nuzZ8/Ovvvuu057AgAAAAAAAADAB41gaj21bt264Xrx4sVrXPvOO+80XLdp02aN+yz/73XZZ23W9ro/AAAAAAAAAAAogWBqPbVv377hem2vx3vzzTcbrv/+tXt/v8+agqk17QMAAAAAAAAAtdJ18NimHqFZmHb5URt0P7/LhrGhfxf+8bRo6gE+qJY/sWnGjBlrXLv86/C6dOnyvvepVCpOjAIAAAAAAAAAgPUgmFpPe+yxR8P1888/v8a1y9/ffffd3/c+Xbp0Sbt27Ro9KwAAAAAAAAAA8B7B1Hraeeed07lz5yTJI488ssa1jz76aJJk++23T9euXVe4d8ABBzRcr2mfOXPmZMqUKUmS/ffff31GBgAAAAAAAACA4gmm1lOlUknfvn2TvHfy01NPPbXKdU899VTDyVB9+/ZNpVJZ4X737t0bTp2644478tZbb61yn+HDhzdc9+vX7/2ODwAAAAAAAAAARRJMvQ+DBg1Ky5YtkyTnnHNOFi1atML9RYsW5ZxzzkmS1NXVZdCgQavc5/zzz0+SzJ8/PxdeeOFK96dOnZof/vCHSZJu3boJpgAAAAAAAAAAYD3VNfUATeXxxx/PCy+80PDvefPmNVy/8MILK5zolCQDBgxYaY/u3bvnggsuyOWXX56JEydm//33z0UXXZRddtklU6dOzZAhQzJp0qQkyQUXXJBdd911lbOcfPLJufXWWzNu3Lhcf/31mTNnTk477bRsueWWGT9+fL73ve9lwYIFadGiRa655prU1RX7swEAAAAAAAAAwPtSbHkzdOjQ3Hbbbau8N27cuIwbN26Fv60qmEqSyy67LHPnzs2tt96aSZMm5cQTT1xpzamnnprvf//7q52lZcuWueeee9KnT59MmDAho0aNyqhRo1ZYs+mmm+a6667LkUceuZZvBgAAAAAAAAAArI5X8r1PLVq0yLBhwzJ27Nj07ds3nTt3TqtWrdK5c+f07ds39913X4YOHZoWLdb8v7pjx4554okncsMNN+SAAw7I1ltvndatW+fDH/5wTjvttDzzzDMZOHBgjb4VAAAAAAAAAAA0T8WeMDV8+PCVXrv3fvTp0yd9+vR5X3vU1dXlK1/5Sr7yla9soKkAAAAAAAAAAIDlOWEKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAAAAAAAAAAohmAKAAD4/9i77+ioyrWNw/cbQgchoRdpAiJFeu8QlCJIRxCRgFKkqeBRFBU4Fo4KyKEdQDqigAiHKr330KSLoRMwdDCEFLK/PzgzH4GUATKFzO9ai7XCnv2ON9nO7Pbs5wUAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEwBAAAAAAAAAAAAAAAA8BoUTAEAAAAAAAAAAAAAAADwGhRMAQAAAAAAAAAAAAAAAPAaFEx5mNOnT6t///4qVqyY0qdPL39/f1WsWFHffvutbt++7e54AAAAAAAAAAAAAAAAwFPN190B8P8WL16sjh076ubNm/Zlt2/fVlBQkIKCgvTDDz9o6dKlKly4sBtTAgAAAAAAAAAAAAAAAE8vOkx5iL1796pdu3a6efOmMmTIoC+//FJbt27VmjVr9Pbbb0uS/vjjDzVp0kS3bt1yc1oAAAAAAAAAAAAAAADg6USHKQ/Rr18/hYeHy9fXVytXrlTVqlXtr9WrV09FihTRP/7xD/3xxx8aPny4Bg8e7L6wAAAAAAAAAAAAAAAAwFOKDlMeYOfOndq0aZMkqWvXrrGKpWz69++vF154QZI0atQoRUVFuTQjAAAAAAAAAAAAAAAAkBxQMOUBFi5caP85MDAwznV8fHzUqVMnSdL169e1bt06V0QDAAAAAAAAAAAAAAAAkhUKpjzA5s2bJUnp06dX+fLl412vdu3a9p+3bNni9FwAAAAAAAAAAAAAAABAcuPr7gCQjhw5IkkqXLiwfH3j3yTFihV7aIyjzp07l+DrZ8+etf984cKFR3pvOFf0zcvujpAsJPYZeFRsl6SR1NtFYtskFT4znont4pn4LvNcfGY8E9vFM/Fd5rn4zHgmtotn4rvMc/GZ8UxsF8/Ed5nn4jPjmdgunonvMs/FZ8YzsV08kzO+y/D47q9jiY6OTpL3NJZlWUnyTngsd+7cUdq0aSVJTZo00ZIlSxJcP0OGDAoLC1OVKlW0bds2h/87xpgnygkAAAAAAAAAAAAAAAC4086dO1WxYsUnfh+m5HOzW7du2X/OkCFDouunT59ekvT33387LRMAAAAAAAAAAAAAAACQXDEln5vduXPH/nOqVKkSXT916tSSpPDw8Ef679w/5V58OY4ePaocOXIoW7ZsCU4NCNhcuHBBlSpVknSvijNXrlxuTgSJ7eLJ2Daeie3imdgunott45nYLp6J7eK52Daeie3imdgunott45nYLp6J7eK52Daeie3imdgunott45nYLp6J7YLHFR0drUuXLkmSSpUqlSTvSVWMm6VJk8b+c2RkZKLrR0RESJJ9Gj9H5c2bN9F1Chcu/EjvCdwvV65cDv1/Btdiu3guto1nYrt4JraL52LbeCa2i2diu3guto1nYrt4JraL52LbeCa2i2diu3guto1nYrt4JraL52LbeCa2i2diu+BRFShQIEnfjyn53Cxjxoz2nx2ZZi8sLEySY9P3AQAAAAAAAAAAAAAAAIiNgik3S5MmjbJkySJJOnfuXILrXrt2zV4w9eyzzzo9GwAAAAAAAAAAAAAAAJDcUDDlAYoXLy5J+vPPPxUdHR3vekePHrX//MILLzg9FwAAAAAAAAAAAAAAAJDcUDDlAWrUqCHp3nR7u3fvjne9DRs22H+uXr2603MBAAAAAAAAAAAAAAAAyQ0FUx6gefPm9p+nTp0a5zoxMTGaMWOGJClz5syqW7euK6IBAAAAAAAAAAAAAAAAyQoFUx6gUqVKqlmzpiRp8uTJ2rZt20PrDB8+XEeOHJEk9evXTylTpnRpRgAAAAAAAAAAAAAAACA58HV3ANwzatQoVa9eXeHh4XrppZf08ccfq27dugoPD9fPP/+siRMnSpKKFi2q/v37uzktAAAAAAAAAAAAAAAA8HQylmVZ7g6BexYvXqyOHTvq5s2bcb5etGhRLV26VIULF3ZxMgAAAAAAAAAAAAAAACB5oGDKw5w+fVqjRo3S0qVLde7cOaVKlUqFCxdWmzZt1Lt3b6VLl87dEQEAAAAAAAAAAAAAAICnFgVTAAAAAAAAAAAAAAAAALyGj7sDAAAAAAAAAAAAAAAAAICrUDAFAAAAAAAAAAAAAAAAwGtQMAUAAAAAAAAAAAAAAADAa1AwBQAAAAAAAAAAAAAAAMBrUDAFAAAAAAAAAAAAAAAAwGtQMAUAAAAAAAAAAAAAAADAa1AwBQAAAAAAAAAAAAAAAMBrUDAFAAAAAAAAAAAAAAAAwGtQMAUAAAC3CAoKcncE4KkyY8YMzZgxQzt27HB3FAAAAAAAgGTJz89PWbJk0bFjx2It37hxozZu3Kjw8HA3JQMAJDVjWZbl7hAAni6hoaE6cOCArl69Kkny9/dXyZIllSNHDjcnAzxPcHCwtm3bposXL+r27dt65513lDVrVnfHAjyCj4+PSpUqpS5duqhjx47KkiWLuyMhAefOnbN/l1WsWFFp06Z1dySv4+PjI2OMfvrpJ7Vt29bdcRCHmJgYrVu3Lta+/8svv1SuXLns60RGRio6OlopUqRQ6tSp3ZgWAPA0Cg8P1+7du+37mebNm+uZZ55xdyzAI4WGhmr9+vVxXsesU6cO1zLdzLIsnThxIta2KVSokIwxbk4GwNvZrr8cOHBAxYsXj7Xcx8dHv//+e6zlcK+CBQvKx8dHK1asUOHChR0ac+bMGdWpU0fGGAUHBzs5IeITERGhzZs36/LlyypYsKAqVark7kjwQhRMAXCIZVmaMGGCxo0bp0OHDsW5TvHixfXOO++oe/fu8vGhgZ2r3Lp1S6tXr9b+/ft1+fJlhYeHK6GvdmOMJk+e7MKE3mnPnj169913tWXLlljLHzzJGjt2rIYMGaJMmTLp8OHDSpkypaujAm5ju/ggSSlTplTTpk0VGBioRo0acYHUQ9y6dUvffPONpk2bppCQEPvyB7/Lfv75Z/3666/KlCmTJk2a5I6oXsHPz083b95UUFCQypYt6+44eMCSJUvUt29fnT59OtbyBz8v48aNU58+fZQhQwaFhIQoffr0ro7qNaKionT8+HFJ0nPPPfdQgdqdO3f0ySefaO7cufaLcz179lSfPn3cEdfrXLlyRbNmzdKmTZt04sQJ3bp1S3fv3k1wDBez4c3Onj2rjz/+WPPmzVNUVJR9+YP7mcmTJ2vChAnKlCmTVq5cyXH1Exo6dKhT3vezzz5zyvvinvPnz6t///5asGCBoqOj41wnRYoUatGihb799lvly5fPxQm924oVKzRmzBitX79et2/fjvVaunTpVLduXfXu3VsvvfSSmxJ6pzVr1mjatGn2hz/u3LnzUFHIxo0bdfDgQT3zzDPq2LGjG9Mmb5zHuJ+vr68sy9LevXv14osv2pfHV0gF93qc7RIcHKwiRYrIGJPoeSgez+nTpzV27FhJ0scff6zMmTPHen379u1q3bq1Lly4YF9WtmxZzZ8/X/nz53dlVHg5CqYAJCo0NFRNmza1T50U39eG7SJcuXLltHjxYuXMmdNlGb1RTEyM/vnPf2r48OEKCwtzaIxlWRwAusCSJUvUpk0bRUZGxvq8xHXQfuvWLeXOnVu3b9/WL7/8ohYtWrgjcrJXqFChRx5jjFGaNGmUKVMmFSlSRFWqVFG7du3k7+/vhITeafTo0Zo2bZr27t0r6f/3I7ly5dKbb76pwMBAh58KQtI7fvy4GjdurBMnTiT6XXbq1CkVLlxYlmVpw4YNqlGjhjsiJ3vlypXT/v37tWrVKtWrV8/dcXCfSZMmqUePHvbPStasWXX58uU4Py+RkZHKmTOnbty4oenTp3OjwYnmzp2r9u3by9/fX+fOnXvoRkOjRo20cuXKh77jevbsqTFjxrg6rleZN2+eunXrpps3b0qK/xzzQZzLON+RI0c0ceLEWIVsMTExCY4xxsRbkICksWPHDjVp0kTXrl1L9LgsNDRU+fLlU1RUlJYtW6aXX37ZHZGTjfsf8khKfJc5z+bNm9W0aVPdvHkz0f2LMUYZM2bUkiVLOIdxgcjISHXu3Flz5syRlPg15nbt2mnatGlKlSqVyzJ6o9u3b+vNN9/Ur7/+Kun/t0tc+5gtW7aoZs2aMsbo6NGjKlKkiFsyJ3ecx7hftmzZdPXqVc2fP1/Nmze3L6dgyjNRMOWZRo4cqf79+6tMmTLas2dPrNdu3rypokWL6tKlSw8dDxQvXlx79+6luQBcxtfdAQB4toiICNWrV09HjhyRZVnKli2b2rZtq0qVKtnbVv/111/atWuX5s6dq9DQUO3evVsBAQHavXs304w4UefOnfXjjz/KsiylSJFCWbJkUWhoqIwxyps3r65du6a///5b0r0TpqxZsypdunRuTp38XbhwQe3bt1dERIRKlCih7777TjVq1FDGjBnjXD9jxoxq1qyZfv75Zy1fvpyCKSc5depUrL8bYxK8MPfgazt27NCsWbPUv39/ffrppxo4cKCzonqVPn36qE+fPvr99981efJkzZ49W1euXFFISIiGDRumYcOGqXr16uratavatGnDd5gL3blzR02aNFFwcLDSp0+vXr16qVatWnrllVfiXL9AgQKqW7eu1q5dq0WLFnGzwUlatGihffv2afHixRRMeZDjx4+rV69ekqR69eppzJgxKlasWLwdV1OlSqVWrVpp8uTJWrlyJQVTTrRixQpZlqXmzZs/dF6ydOlSrVixwn7sXLFiRe3cuVPnz5/X+PHj1aFDB1WrVs1NyZO3HTt2qEOHDoqJiZFlWcqdO7fKli0rf39/OhW72YgRIzRw4EBFR0c7XMQG57t+/bpeffVVXb16Vbly5dKnn36qmjVrqlSpUnGunz17djVq1EiLFi3S0qVLKZhKAo4U3STFOnhyISEhatq0qW7cuCHpXlFBly5d4ryOOWXKFC1btkw3b95U06ZNdejQIeXOndud8ZO9Dh06aMGCBbIsS76+vmrQoIEqV65sf+j24sWL2rlzp1atWqWoqCjNmTNH0dHRmjt3rpuTJ29t27bV8uXLZVmWKlWqpFq1aum7776Lc93q1aurZMmSOnTokObPn6+PPvrIxWm9A+cx7le+fHmtWrVKn3zyiVKnTq2iRYvGKt64cOGCMmTI8MjvS0dDz2E7VuB6s/OsWrVKxhi9+uqrD702ceJE+/3Mvn37qn79+lqxYoXGjRunI0eOaPr06XrrrbfckBpeyQKABHz99deWMcby8fGx3nrrLevvv/+Od92wsDCrW7du9vW//vprFyb1Lr/99pv99xwYGGhdvXrVOnDggH2ZzdGjR61+/fpZvr6+1vPPP28dOXLEjam9wwcffGAZY6wCBQpY165dsy+3bZtDhw49NGbixImWMcYqV66cC5N6l86dO1udO3e2ypUrZxljLGOMlTVrVisgIMBq37691b59eysgIMDKmjWrfVuVK1fO6tSpk9W8eXOrcOHC9nE+Pj5Wnz593P1PSpYiIyOt+fPnW6+88orl6+tr/337+PhYzzzzjPXWW29ZW7ZscXdMrzBixAjLGGNlyJDB2rt3r315Qt9lw4cPt4wxVo0aNVyY1LvcuHHDKlCggJU6dWpr9erV7o6D/+nZs6dljLFKlSplRURE2Jcn9HmZPn26ZYyxSpYs6cqoXqdMmTKWj4+PNXPmzIdea9mypWWMsYoVK2bdvHnTsizLun79ulW8eHH7MTaco0WLFpYxxkqXLp31448/ujsO/mf58uWxjnerVq1q9e7d2/rss8+swYMHJ/oHzjNkyBDLGGNly5bNOn36tH15QvuZMWPGWMYYq3Llyq6M6nVOnjxpVapUyTLGWI0bN7Z++eUX68yZM1ZERIQVERFhnTlzxpo/f77VuHFjyxhjVapUyTp58qS7YydrvXv3towxlq+vb5z7/wf9+OOPVooUKTjPd4ElS5bYv7fq1atnnTp1Kt51T58+bdWvX9++/tKlS12Y1Lv88ssv9t/zpEmT7MsT2sd8/vnnljHGatiwoSujehXOY9zv/u+s+//cf7z8qH9SpEjh7n9WspXQd1Z83nvvPcsYY5UoUcKJybzb888/b/n4+FhLlix56LWKFStaPj4+VuvWrWMtb9u2LfsYuBwFUwASVLp0acvHx8d6+eWXHR7z8ssvW8YYq3Tp0s4L5uXatWtnvzFnc/DgwYcKpmwWLVpk+fr6WgULFrSuX7/uyqhep1SpUpaPj481evToWMsTOmjfuHGjZYyx/Pz8XBXTK02fPt1KnTq19dxzz1mLFi2y7t69+9A6d+/etf773/9ahQoVslKnTm1NnjzZ/trOnTutMmXK2Lfltm3bXBnf61y4cMEaNmyY9cILLzx0MaJYsWLWN998Y128eNHdMZOtGjVqWD4+PtYnn3wSa3lC32WrV6+2jDFWjhw5XBXTKx0/ftwqXbq05evra7399tvWunXrrCtXrlgxMTHujua1bBeA7t9nWFbCn5ctW7ZYxhgrU6ZMLkrpnXLnzh3nPvvu3btWpkyZLB8fH2vs2LGxXhs3bpz9BgScI0eOHJaPj481dOhQd0fBfWzn8f7+/tbmzZvdHQf3qVChQpwPpSW0n1m3bp39IRE4x/Xr163ChQs7XJgza9YsK0WKFFbhwoW5LuNEhQoVsnx8fKyePXs6PMZW/F6oUCEnJkPr1q0tY4xVtmxZKzIyMtH1IyMjrbJly8Z5MxVJp2nTppYxxurUqVOs5QntYxYtWmQZY6z8+fO7KKX34TzGM4wdO9bKnDmz/brkk/6J674NHk/dunVj/bH9fitVqvTQaw/+qVatmpUzZ077deb33nvP3f+cZMvf39/y8fGxdu/eHWv59evX7QXrDxZT/frrr5YxxsqVK5cro8LLMSUfgAT9+eefkqR33nnH4THvvPOOVq5cqeDgYGfF8nrbt2+XMcY+/UtimjZtqjfffFNTp07Vv//9b3366adOTui9Tp8+LUmqVKmSw2OeeeYZSbJPoYikt3fvXr399tvKmTOntm/frqxZs8a5no+Pj5o1a6aqVauqfPny6tmzp1588UVVqFBBFStW1OrVq/Xiiy/q4sWLmjhxoqpUqeLif4n3yJkzpz788EN9+OGH2rZtm6ZOnao5c+bo1q1bOnbsmD766CN98sknaty4sXr06KGGDRu6O3KycuTIEUnSSy+95PCYLFmySLo3bQycI0WKFPafLcvS5MmTNXnyZIfGGmMUHR3trGhe7dy5c5Kk0qVLOzwmffr0kqTbt287JRPuuXz5siQpbdq0sZbv27dPN2/elDFGTZo0ifVayZIlJUlnz551TUgvZNtPME2YZwkKCpIxRp999pmqV6/u7ji4j+26TK1atRwe4+fnJ0m6efOmUzJBGjlypIKDg9WjRw+Hptd9/fXXtXnzZk2YMEHDhw/X0KFDXZDS+4SEhEiS2rRp4/CYNm3a6D//+Y99LJzDdi2zf//+saa1ik/KlCk1YMAAdezYUdu3b3dBQu9k2/+3a9fO4TG5cuWSJF26dMlZsbwe5zGe4Z133lFgYKCCgoJ0/vx5RUREKDAwUMYY/fOf/1SePHncHdFrrV+//qHpji3L0q5dux7pfQoVKqSBAwcmdTz8z61btyRJd+/ejbV869atiomJka+vr+rUqRPrtWeffVaSdPXqVZdkBCSJgikACUqdOrXCw8PtOylH2NZNlSqVs2J5vdDQUElS0aJF7cvuv4kaERHx0PzmrVu31pQpU7RgwQIKppzIdjM6JibG4TG2+bIfZ95zOGbEiBGKjo7WwIED4y2Wul+2bNk0cOBA9erVSyNGjNDs2bMl3SsI6dmzpz777DNt3rzZ2bHxP5GRkYqIiNDdu3ftJ8OWZSk6OlqLFy/W4sWLVaZMGY0fP/6RihURP1sB56N8L0VEREiSQxe/8XjuvxAU19/hHsYYSY9W/HTlyhVJUqZMmZySCfekTp1a0dHR9hsONhs3bpQk5c2bV/nz54/1WsaMGSU9fEEPSSdXrlw6c+aM/bMDz2D7DqtRo4abk+BBd+7ckfRox1hhYWGSHr7RiqQzf/58GWMeqTCnbdu2mjBhgn799VcKppzEz89Pf/311yMdY9nWtRUawjlsxTXFixd3eEyxYsUk6aFjOSQd23lJ7ty5HR7j4+Mj6dGufeLRcB7jOdKmTauaNWva/x4YGChJat68+SN9nyFp1apVK9b55IYNG2SMUfny5e0PqMXFGKM0adIoV65cqlatml577bUE18eTyZw5s65cufJQUfr69eslSWXKlIn3958mTRpnxwPsKJgCkKBixYpp+/btOnv2rMqWLevQGNtTDLaTWjiPv7+//WfbSZF0r6DqwSK37NmzS5JOnTrlkmzeKmfOnDp16pROnDjhcPehnTt3SpLy5cvnzGhezXZBoUKFCg6PqVixoiQ9VBhlu4l08eLFJEqHuJw5c0bTp0/X9OnTdfLkSUn3ikN8fHzUsGFDvfHGGzp48KBmzJihc+fOae/evapVq5Y2bNigypUruzn90y9Lliy6ePGiTp06pXLlyjk05tChQ5LufQ/COT7//HN3R0Ac8uTJo+PHj+vEiROxLqQmxLZvKVSokDOjeb38+fPr8OHD2rFjh+rXr29fvnjxYhlj4uzWYnuKMVu2bC7L6W0CAgI0ZcoU7d692368BffLkyePTpw4ocjISHdHwQOyZ8+uc+fO6eTJkw5/Zvbt2yfp0W6A49HYrq08TmGOrTM1kl6FChW0dOlSHThwwOHzmAMHDtjHwnnSp0+v69ev2wt0HHHt2jVJUrp06ZwVy+tlypTJfjO7TJkyDo2xXaNx5IFEPB7OYzyXrVCHIhv3shXc2NgKOadNm0YhmwcpUaKENm7cqAULFujVV1+VdK+oc+7cuTLGPNRdSpLOnz8vScqRI4cro8LLUTAFIEGdO3fWtm3b9J///EfNmjVzaMx//vMfGWPUqVMnJ6fzXjly5NCZM2ditaXMkSOHUqVKpaioKP3+++8PFUzZLsjZnk6Fc9SsWVMnT57UvHnz1KFDh0TXj4yM1IQJE+I9QETSsHVls3XAcYRt3QdbjNueOmVqq6QXERGh+fPna+rUqVq3bp29k5R072JRly5d1KVLl1gtr4cOHapZs2bp/fff19WrV/XZZ59pxYoV7vonJBvlypXTsmXLtHHjRrVs2dKhMTNmzJAxRlWrVnVyOu9FwZRnqlOnjv744w9Nnz5db775ZqLr37hxw368XK9ePRck9F5169bVoUOHNHr0aLVo0UIvvPCCFi1aZL+42rhx44fGHDx4UNL/TzWCpDdgwADNnj1b3333nTp27EiXVQ/RtGlTjRo1Slu2bGFf7mEqV66sc+fOafny5Wrbtm2i61uWpUmTJskY43AhLx6drePX4xTm0JHVefr27aslS5bom2++UZs2bRIttLl9+7b+9a9/yRijPn36uCild3r++ee1Y8cOzZkzRwEBAQ6NmTNnjn0snKNo0aLatm2b9u/fH+excVwWLlwoSQ4/XI1Hx3mM53qwUAeeoVOnTjLG0C3Sw7Ro0UIbNmzQzJkzlSNHDtWsWVMzZ87U6dOnZYyJ89wmKChIkh5p1iPgSfm4OwAAz/bWW2/p5Zdf1ooVK/TOO+8kWGwTERGh3r1767ffftNLL72kbt26uTCpdylVqpQk6fDhw/Zlvr6+9hPVqVOnPjRm/PjxkvRQu14krc6dO0uSFi1apFWrViW4bmRkpDp16qTg4GAZY/T222+7IKF3sj31ltg2uZ+t6ObBJ+ZsUyjyxFbS2bFjh3r06KGcOXPqjTfe0Nq1axUTE6OUKVOqTZs2WrFihU6cOKFPP/00VrGUdO8Jok6dOmnkyJGSpN27d7vjn5DstG7dWpZlaeLEiTpz5kyi63///ff2Tm7t27d3djzAo3Tv3l3GGG3YsEHTpk1LcN0rV66oefPmunjxonx9fdWjRw/XhPRSffr0UapUqRQaGqqSJUsqa9asatGihSzLUp48edSqVauHxqxcuVLGGL344otuSOwdnn/+ef34448KCQlR/fr17R0K4V4DBgyQv7+/hg8fTidVD/P666/Lsiz9+OOP9s5RCenfv7/2798vSQ4V8uLxlC5dWpZl6V//+pdD0/LeX5jDPsZ5AgIC9Pnnn+vIkSOqU6dOgp+Z/fv3q27dujp27Jg+//xzNWjQwHVBvVCzZs1kWZamTp2a6DGzJM2cOVNTpkyRMUbNmzd3ej5v1aRJE1mWpdGjRzv0kO2mTZv0888/yxijpk2buiChd+I85ukTHR2tS5cu6dKlSzxk6wbTpk3T1KlTKRj0MN27d9cLL7wgy7L03Xff6dVXX9Uvv/wi6d4DO3F191ywYIGMMQ7P3gIkBWPZHtsH4NVsNznjEhERoUGDBikoKEg5cuRQ27ZtVbFiRWXPnl3GGP3111/atWuX5s2bp4sXL6pChQr68ssvlSpVqjjbw+LJjRgxQgMGDNCrr76qBQsW2JePHTtWffr0kTFGHTt2VNu2bRUWFqbp06dr+fLlMsbogw8+0LBhw9yYPvlr37695syZo1SpUqlfv35q1aqVqlSpImOMFi9erMyZM2vLli2aOHGiTpw4IUnq2bOnxowZ4+bkyVenTp00a9YspU+fXuvWrUu01f6uXbtUt25dhYeH6/XXX9eMGTPsr40ZM0Z9+/ZVpUqVtH37dmdHT9a++eYbTZ8+XUePHpUkezep4sWLq2vXrurUqZOyZMni0HsdPXpUxYsXlzFGd+/edVpmbxETE6Ny5crp999/V4ECBTR27Fg1bNhQKVKkkDFGBw8eVLFixRQUFKTvv/9eP//8s6R7XfZ42g7e6P3339f3338vY4xat26tVq1a6bXXXpMxRhMmTFC6dOm0ZcsWzZ49Wzdv3pQkDRkyRIMGDXJz8uRv3rx56tKli8LCwuzLMmfOrMWLF6t69eqx1r148aLy58+v6OhozZo1iwLQJ9SlS5cEX//999+1Z88eGWNUqlQpFStWLNFOIMYYTZ48OSlj4j5bt25V8+bNlSFDBo0ZM8bhThNwvvr162vdunXy8/PTF198oVatWilnzpwyxmjv3r3KmjWrtmzZon//+9/aunWrJKlly5aaN2+em5MnX7Nnz1bHjh1ljFH58uU1ceLEeKez2r9/v7p166Zdu3bJGKOZM2c61JEa8Rs6dGiCry9ZskRBQUH2fUxc1zHvn4qvSZMmkqTPPvvM6dm9VVhYmIoWLWovym3UqJG6dOmiypUrx9o2O3bs0JQpU7R8+XJ7ccixY8eYls9Jbt68qUKFCunatWtq1KiRZsyYIX9/f/n4+MgYowMHDqh48eKKjo7W1KlTNWDAAP3999969tlndfz4cTrmORHnMZ7vyJEjGjdunFavXq3jx4/br2saY1SkSBE1aNBAPXr0YIo4DxIcHKzLly+rQIECTPnmIhcvXlTv3r21ePFiRUVFKVWqVGrXrp3GjBmjjBkzxlp348aNqlOnjowxWr9+Pd1y4TIUTAGQJPtJUFIyxlBN7yQnT57Uc889p9SpU+vUqVP2g7vo6GhVqVLFfuPhfpZlKX/+/NqzZw+tSZ0sIiJCrVq10rJlyxL8XNl2wS1bttScOXOUIkUKV0X0OocOHVK5cuUUHR2t1KlTq2/fvurYsaNKlChh30aWZenQoUOaOXOm/cm6VKlSKSgoSCVLlrS/V/369bV+/Xr1799f33zzjbv+ScmCbd9jWZbSp0+vtm3b6q233nqsaWCCg4NVpEgRCqaS0JkzZ1SjRg2dO3dOxhilS5fO/vR81qxZdevWLfvUlZZl6bnnntOWLVuUPXt2d8YG3MKyLPXu3Vvjx493aN//7rvvasSIEa6K5/VCQ0O1dOlSXbx4Ubly5VKzZs3k7+//0HorV67UTz/9JOle57xMmTK5Omqy4ug5pmVZj7Qe+3nnsE0RGhISoj/++EPGGGXOnFlFihRxqJBtzZo1rojpta5fv6769etr7969iX5eLMtSlSpVtGrVKqVPn95FCb1T27Zt9csvv9i3SWKFOZZlqVWrVhSyJYGk2MfE9Rr7GOfau3evAgICdO3aNYe+y/z8/LR27VqVLl3aRQm905o1a9S4cWNFR0crTZo0ql27tn777TcZY9SoUSNFRkYqKChIN27ckGVZSpMmjdavX69KlSq5O3qyx3mM5xo4cKC+++47xcTEKL7b7MYY+fj46IMPPtBXX33l4oTeJTQ01N656PXXX3/oM/Dnn3+qXbt29s6Txhi9+uqr+uGHH7hX5iIRERG6evWqsmTJolSpUsW5zsmTJ+0zHdSqVSvJ71kD8aFgCoCkexcakhoXs53r1KlTunv3rnLnzq20adPal1+7dk19+/bV3LlzFRUVJenetmjcuLHGjx+vvHnzuiuy15k0aZK++eYbBQcHx/l63rx59fHHHzMdj4vMmjVLgYGBunv3rv1gO3Xq1PYLDVevXo1V/OHj46OpU6fqjTfesL9HcHCwAgICJEkzZszgKYcn5OPjo4oVK+qtt95S+/btlSFDBndHwgOuXr2qPn36aO7cufHu040xatOmjcaPH89FBidL7En6xPDEvPOtWrVKw4YN04YNGxQTExPrNVtL8UGDBqlRo0ZuSgi4ToECBZxygfPkyZNJ/p6IXXzg6KVCW+E75/6uERkZqSFDhmjcuHH2acIflC5dOvXu3VtDhw6N90YEks7du3fVv39/jRkzxr7fj+t7z/Y56dWrl0aMGCFfX19XR012nHEdU9JDx29IeiEhIerXr58WLlwY774jRYoUatGihUaOHKk8efK4OKF32rJlizp27KjTp09Levi7zHZs8Oyzz2ru3LmqXLmyyzMCnqJPnz4aN26c/XPxwgsvqHLlysqZM6ekex11du7cqcOHD0u693nq3bu3Ro0a5bbMyd1//vMfvfPOOypSpIiOHTsW67WIiAiVLFlSJ06ciHWeY4xR9erVE5x9B0/GVvyUIUOGOIs9AU9BwRQASdKGDRuc8r61a9d2yvsicbdu3dLx48cVHR2twoULc0DiRocPH1ZQUJBCQ0N19+5dZcmSRWXLllW5cuWoknexrVu3qlevXtq/f3+C67344osaO3bsQy2ukbQOHDigUqVKuTsGHHD69GktXbo0zu+ypk2bqmjRou6O6BWetCMoN7Nd59atW9q7d2+sz0uZMmWUNWtWd0cDgDjZpj54XOvWrUvCNEhIWFiYNmzYEOdxWUBAAF0l3ODgwYP6z3/+89CUPJJUpEgRBQQEqHv37nrxxRfdmBLwLBcuXND69et18OBBXb16VZLk7++vkiVLqk6dOsqVK5ebE3qf6Oho/fzzz1q0aFGc+5hmzZrpzTffpCAXXm3Lli2qWbOmjDF64YUXNHHiRFWrVi3Odbdt26YePXrowIEDMsZo06ZN8a6LJ9OyZUv997//1QcffKBhw4bFem3ChAnq2bOnjDFq2rSp6tevr9WrV2vx4sUyxmj27Nlq166dm5Inb7brmKNHj9Y777zj7jhAvCiYAgAAXmfnzp1avXq1Dh48qGvXrkmS/Pz8VKJECdWvX19VqlRxc0IAeNijPklv6/xhwxPz8Hbh4eHavXu3Ll68qNu3b6t58+Z65pln3B0LABI0Y8YMSdLzzz9PR4+nQGRkpP0cM3PmzEqdOrWbEwEAgKTSqVMnzZo1S4UKFdLu3bsTLVS/ceOGypcvr5MnT+r111+3H9chaZUoUUJHjx7V/Pnz1bx581iv1a5dW5s2bVL9+vW1atUq+/KXXnpJq1ev1quvvqoFCxa4OLF3SJ8+ve7cuaPt27erYsWK7o4DxIv+vwDwFPLx8ZGPj4+++uor/eMf/3B3HMDjPdj+tVKlSqpUqZKbUwHAo3Gk4On27dv6448/NHv2bP373/9WxYoVNX/+fGXPnt0FCQHPdPbsWX388ceaN2+efcpqSapQoYKKFy9u//vkyZM1YcIEZcqUSStXrqQTKACP0LlzZxlj9NNPP1Ew9RRIlSqVcuTI4e4YgMexTXlUsWJFpU2b1qExd+7c0c6dOyVJtWrVclo2wF3unwrs/v/Hn3SKMD4vzrNp0yYZY/TRRx851NUzU6ZM+vDDD9W9e3dt2rTJBQm906VLlyRJefPmjbU8PDxc27dvlzFG3bp1i/Valy5dtHr1au3Zs8dlOb1Nnjx5FBwcTMd7eDwKpgDgKZQqVSpFRUWpZs2a7o4CPBUKFChA+1cP9DgXgIwxSpMmjTJlyqQCBQrQCh54QLp06VSmTBmVKVNGzZo1U4MGDfTyyy9r+/btdDiAV9qxY4eaNGmia9euxeq4FlcxVNOmTdWrVy9FRUVp5cqVevnll10Z1WvYHv74/fffYxWsJSQ4OFhFihSRj4+PoqOjnZwQ8CyZMmXSzZs3VaRIEXdHAYDHVqdOnUfe/58/f94+jv0/kiPblMjGmFj/jz/JVMkPvheS1sWLFyVJZcuWdXhMuXLlJEl//fWXUzJBun79uqSHO7Nv375dUVFR8vHxUUBAQKzXChYsKEkKDQ11SUZv9NJLL2n8+PHavHkzM3rAo1EwBQBPody5c+v06dPy9eVr3JPt379fmzZt0okTJ3Tr1q1EK+mNMZo8ebKL0nmXtGnT6s6dO7R+9TBPcgFIknx9fVWmTBl17txZb731llKmTJmE6WATExOjw4cPO/xdJt1rUQ73q1Gjhnr27KlRo0bp+++/14cffujuSMladHS0li5d+sj7/jVr1rgoofe5fv26Xn31VV29elW5cuXSp59+qpo1a6pUqVJxrp89e3Y1atRIixYt0tKlSymYcqL7i9dcMQ6Px7IsnThxQlevXpUk+fv7q1ChQnRfc7GCBQtq//799mneAOBpxf7/6XDz5k2Hz/3z5cvngkTJW3z/f/P/vWdKkyaNIiMjFRYW5vAY27o8xOY8GTJk0I0bN+wFbTbr16+XJBUvXlx+fn6xXrNdR+Yem/P069dP06ZN03fffaf27dsrT5487o4ExIlvAQAJqlev3mOP5QaQ89SqVUszZ87U7t27KQDxQMeOHVOXLl20fft2h8dYlkXBlBPR/tVzPckFoKioKO3atUtBQUEaP368lixZwsW6JBQeHq4vvvhCkyZN0pUrVxweZ4yhYMqDvPLKK/r+++/1888/UzDlRJs3b9Ybb7xhnwJWSvj7zRhj3/fDef79738rNDRUWbNm1bZt2xzaRwQEBOi///2vffoXeBY+M66xYsUKjRkzRuvXr9ft27djvZYuXTrVrVtXvXv31ksvveSmhN6lRYsW2rdvnxYvXvxE12jgHEeOHNHEiRNjFUwnNo0y3T+cJ0WKFI89lu3ieWyfpSfZrnDMqlWrNG7cOG3evNleKJ0YPjNPbt26dY+0HO5nK2RfvHixw1MfLl68WJJUqFAhZ0bzasWKFdOOHTv022+/qXHjxvbl8+fPlzFGtWvXfmiMrbiKqZSdp0iRIpo9e7Y6duyoKlWq6F//+pdat27NjBHwOBRMAUjQ+vXr7Td04vPgRWvbulzMdp4+ffpo9uzZ+u6779ShQwc988wz7o6E/zl//rxq1aqly5cv2z8LGTJkkJ+f30MtYeE6tH/1TOvWrVNUVJQ+/fRT7dixQ7lz51abNm1UoUIFZcuWTdK9OeiDgoI0b948hYSEqHLlyhoyZIjCw8N18OBBzZkzRwcPHtTBgwfVuHFj7du3jyeDkkB4eLjq1aunnTt38lTjU87f31/Svems4BxHjx5Vw4YNFR4eLsuylCpVKhUpUkT+/v7s+91s8eLFMsbo/fffd7igtkSJEpL4zHiay5cvS5LSp0/v5iTJW2RkpDp37qw5c+ZIirvwMywsTEuXLtXSpUvVrl07TZs2jQveTtavXz9NmTJF48eP1yuvvKL69eu7OxL+Z8SIERo4cKCio6M5ZvYQbIfk5fTp05LuTU0K5+nbt6/Gjh0ric+Qq8VVxJHQcrif7drj6NGj1bBhw0SPy9atW6fRo0fLGBOrkAdJq0mTJtq+fbsmTpyoF154QTVr1tS0adN0+PBhGWPUsmXLh8bs2bNHkuh65ES2hz2yZcumkydP6o033lDXrl1VpEgR+fn5JVgQTUMOuBJ3kwAkqFatWokWPoWFhenPP//U9evXZYxR0aJFlStXLhcl9E7ly5fX6NGj1bt3b9WuXVtjx45VtWrV3B0Lkr788ktdunRJxhi99dZbGjBggIoWLeruWF6P9q+eqXbt2mrWrJl27typPn366F//+pfSpEnz0Hqvv/66hg0bpgEDBmjs2LH6/vvvtWzZMr366qv65JNP9Omnn+rLL7/UkSNHNHXqVL399ttu+NckLyNHjtSOHTskSSVLllTv3r1Vvnx5CkCeQseOHXN3hGTvq6++0u3bt5UiRQoNGTJEffv2VYYMGdwdC5L+/PNPSXL4yV9J9jb9N2/edEom/D9HH7AJCwvT6NGjJUnPPfecMyN5vQ4dOmjBggWyLEu+vr5q0KCBKleurJw5c0q69xT2zp07tWrVKkVFRWnOnDmKjo7W3Llz3Zw8eXvmmWe0atUqtW7dWg0bNlRgYKA6dOigF198UX5+fjys5ia//fabBgwYIOne91mVKlU4XvYAn3/+eaLrhIWF6Y8//tCqVat0584dValShY55TnB/59X7XbhwIdFj5YiICAUHB+vTTz+VMcZe0I6kN3v2bI0ZM0bSvanGmjdvzncZkIB3331XY8aM0a1bt9SoUSN169ZNXbp0UZkyZeyfmZiYGO3bt09TpkzRpEmTFBUVpUyZMundd991b/hkrHfv3ho3bpwuXLig3r17x3qtatWqqlu37kNjbA9YMYOL89gacthYlqWIiAgdPHgw3jF0ZIc7GIuScQBJZNmyZerbt69u3rypBQsWqHr16u6OlGx16dJFkrRz5057lfyzzz5rv2CaWGU20745T6FChXT69Gl16tRJU6dOdXcc3GfRokXq2LGjMmXKRPtXDzF16lR17dpVTZo0sbenTswrr7yi5cuXa/z48erWrZt9ed26dbVhwwa9/PLLWr58ubMie43SpUvrwIEDqlatmtauXctn5Sl1/fp11ahRQ0eOHFHFihUfaapYOC5v3ry6cOGC3nvvPX333XfujoP7pE2bVpGRkdq+fXusi6A+Pj4yxujAgQMqXrx4rDFbt25VjRo19Mwzz+j69esuTpw8PTj1xKlTp2SMUe7cuZUyZcoEx0ZERCg0NNQ+Jc+gQYM0ZMgQp2X1ZkuXLlXTpk1ljFGdOnU0ZcoU5c+fP851z5w5oy5dumjt2rUyxmjx4sU8Me9E95/fP+rNA6ZLcp6GDRtq5cqV8vPz06JFi7gG9hS6cuWKunbtqiVLlmjUqFHq1auXuyMlKw9em3ySGQkmTZpkvxaKpFW7dm1t2rRJzz77rNauXUtxOuCAlStXqlmzZoqMjLR/p6VKlUr+/v4yxujKlSuKjIyUJHsX6iVLliggIMCdsZO9I0eO6I033rB3jpKkmjVr6qefflLu3Lljrbt//36VLVtWxhgtW7ZML7/8sqvjeoU6deo8UeET05PCVSiYApCkLl68qHLlyik6Olp79+6li4uT2G7y2Dh60cF2cfXu3btOzefN0qRJo6ioKK1evTrOJxfgHrb2r6dPn9bJkydljLFPmUT7V/epWbOmtm7dqoULF6pp06YOjVm8eLFeffVVVa1aVVu2bLEvnz59ugIDA5UzZ06FhIQ4K7LXyJAhg8LDw7VgwQI1a9bM3XHwPxs3bkx0nZiYGF27dk1BQUGaOnWq/vrrL0nS2LFj1aNHD2dH9Eq2ff/GjRu5Weph8ufPr3Pnzumnn35S27Zt7csTKpgaN26cevfurWLFiunw4cOujpwsJVV3gipVqmjVqlVMy+ckbdq00fz581WmTBnt2LEj0WK2qKgoVa5cWfv371fLli01b948FyX1Pk/yGeL833myZs2qa9euacSIEerXr5+74+AxRUdHq3Llyjpw4IA2bdqkypUruztSspEU+/80adKob9++GjZsWBIkQlz8/Px08+ZNitKAR7Rv3z5169ZNQUFBCa5XoUIFTZo0SaVLl3ZRMpw8eVIXL15Urly5VKBAgTjX2b9/v/bt2yfpXpfdxM59ACRvTMkHIEnlzJlT7733nj788EN98803GjVqlLsjJUv58uWjJaWH8vPzU2hoqDJnzuzuKLgP7V8905EjRyTd687iKNu6R48ejbX8hRdekCRdvXo1idJ5t1SpUik8PFz58uVzdxTc51GfzLIVVLdo0ULdu3d3Viyvly1bNoWEhCht2rTujoIHVK5cWefOndPy5ctjFUzFx7IsTZo0ScYY1axZ0wUJvcObb74Z6+/Tp0+XMUbNmjVL8JjZGKM0adIoV65cqlatmurVq8dxmRNt375dxhj179/foRsGKVOm1IABA9SxY0c6GDqZI1OMwfVu374tSapRo4abk+BJ+Pr6qm/fvgoMDNSIESM0Z84cd0dKNh7suh4YGChjjP75z38m+IDt/fv/smXLMtW1k0VFRUmSypYt6+YkwNOlTJky2rlzp3bt2qXVq1fr4MGD9muS/v7+KlmypAICApjuzQ0KFiyoggULJrhO6dKlKWIDYEfBFIAkZ7tYtHTpUgqmnOTUqVPujoB4VKhQQcuWLdMff/zBxQYPUqtWLW6weaA7d+5Iks6dO+fw5+XcuXOS7k3Rcz/bjb106dIlYULvVaxYMe3YsUMXL150dxQ84FEaBL/44ovq1auX3nrrLb4DnahGjRqaO3euDh48qHLlyrk7Du7z+uuv65dfftGPP/6ofv36qUyZMgmu379/f+3fv1/GmIeKfPD4HrxhOn36dEnSl19++VCHL7jPpUuXJOmRtkmxYsUkSZcvX3ZKJtxDwZRnypMnj06cOGGfcgdPr5IlS0pSrA7GeHIPHksFBgZKkpo3b87+34MUKFBAR44c0d9//+3uKMBTqWLFihRFAcBTjoIpAEkuVapUksSUSPBKffv21dKlSzVx4kS1a9fO3XHwP+vXr3d3BMThueee08GDB/XDDz84PCXfpEmT7GPvZ9vnZMuWLWlDeqnOnTtr+/btmjdvnho2bOjuOPifdevWJbqOj4+PMmbMqAIFCtDt0EXef/99zZ8/X6NGjVKHDh3k68tptqd49dVXVbduXa1bt07169fXF198oVatWtlfj46OVkhIiLZs2aJ///vf2rp1q4wxatmypapVq+bG5Mmbrfgje/bsbk6C+6VPn17Xr1/XlStXHB5z7do1SRSswzs1bdpUo0aN0pYtW1S1alV3x8ETsD3IQ/Gnc9nOZRLr+gHXatmypb788kutWbOGDqsAko2//vpL69evj7PzV506dZQjRw43J/Re586d08WLF3X79m1VrFiRbu3wCMZ6lEeUAcABo0aN0nvvvSd/f38uNjiJj4+PjDH6+uuv9Y9//MPdcfCAgQMH6l//+pe6d++uf//738yBDcTjn//8pz7//HMZY/Tee+/p66+/jvfzEhUVpY8++kgjR46UMUZDhgzRoEGD7K9//PHHGjZsmBo1aqSlS5e66p+QbFmWpQYNGmjDhg2aMWOG2rdv7+5IgEcbN26c+vbtq8aNG2vKlCnKmjWruyPhf65fv6769etr7969iXZasyxLVapU0apVq5Q+fXoXJQQ8Q7Vq1bRjxw516dLFXqCemG7duumHH35QlSpVtHXrVicnBDxLSEiISpcuLV9fX+3du1c5c+Z0dyQ8pv79+2vkyJHKkyePzp496+44gEvduHFDZcqU0bVr17R9+3Z790gAeBpduHBB77//vn799VdFR0fHuY6vr69atWql4cOHK1euXC5O6J1u3bqlb775RtOmTYvVaOPAgQOxuk7+/PPP+vXXX5UpUyaHz0mBpEDBFIAktW3bNr3yyiu6fv26Xn75ZS1btszdkZKlNGnSKCoqSps3b+ZJRjeZMWNGgq9PnDhR27ZtU65cudS6dWsVK1bMoSevO3XqlFQRAY8XHh6u0qVL688//5QxRnnz5lWbNm1Uvnx5e6eoS5cuaffu3Zo3b57OnTsny7JUuHBh7d+/3/4Eyt27d/Xcc8/p7NmzGjFihPr16+fOf9ZT5cyZM/G+FhYWprffflvbtm1Tq1at1KFDB4e/y/Lly5eUMQGPMHTo0ARf/+2337R9+3alTZtWDRo0cPjz8tlnnyVVRMQjMjJSQ4YM0bhx43Tjxo0410mXLp169+6toUOH2jvmAt5k2LBh+vjjj+Xj46MffvhBnTt3TnD9mTNnKjAwUJZl8SCPi0VFRWnPnj1xPjFfrlw5Hthxoa1bt6p58+bKkCGDxowZo8aNG7s7Eh5BWFiYRo8erUGDBsmyLL3xxhuaNm2au2MBLvfHH3+oadOmunTpkr744gu1b99efn5+7o4FAI9k//79CggI0NWrV5VY6YMxRlmyZNGaNWtUqlQpFyX0TsePH1fjxo114sSJWNvFGPNQwdSpU6dUuHBhWZalDRs2qEaNGu6IDC9EwRSABCV2Y0iSYmJidO3aNQUFBWnHjh2KiYmRMUa//fabGjRo4IKU3qdQoUI6ffq0tm/fzhzZbmLr8pWUjDHxPvmApGdZlk6cOBHrJkOhQoWSfLsiYefOnVOTJk104MABSYr39287ZC1ZsqSWLl2qZ5991v7a6dOn7Re233rrLeXJk8e5oZORFClSJLqOZVmP9LnguwzJlaP7/kf9zNy9e/dJYuERhIWFacOGDQoKClJoaKju3r2rLFmyqGzZsgoICFCmTJncHTFZSago90lQlOscYWFhKlq0qC5evChJatSokbp06aLKlSsre/bsMsbor7/+0o4dOzRlyhQtX75clmUpT548OnbsGNPyucDt27f1z3/+U5MmTbJPh/ggPz8/devWTYMGDWKbOFm9evUk3es09ccff8gYo8yZM6tIkSKJ/u6NMVqzZo0rYnod23ZJiO065h9//KHIyEhZlqUMGTJo9+7dKlKkiAtSAq5XqFChBF+/ffu2QkNDZYyRMUZZs2Z16LssODg4KWMCwGMJCwvT888/b+9eFBAQoLfffluVK1e2dwG9ePGidu7cqR9++EErV66UJOXNm1dHjx7luNlJ7ty5oxdffFF//vmn0qdPr169eqlWrVp65ZVX4iyYkqQGDRpo7dq16t+/v7755hs3JYe3oWAKQIIetSjEsiz5+vrqm2++0bvvvuu8YF6uc+fOmjlzpsaOHasePXq4O45X8vHxSfL3NMZw09QFVqxYoTFjxmj9+vW6fft2rNfSpUununXrqnfv3nrppZfclND7REdHa+zYsZowYYKOHj0a5zpFixZV9+7d1bt3b56aT0J8lz297t69q4ULF2r16tVxdpgICAhQ8+bNHSqKg2Oc8XmR7t20A5IjZ3z/UJTrXHv37lVAQICuXbvm0BSWfn5+Wrt2rUqXLu2ihN7rzJkzCggIUHBwsENPzBcuXFhr1qxR3rx5XZTQ+9x/vczRy+vGGHthNcfLzmHbLo9yyyN//vyaNWuWqlev7sRkgHtx7g8gOfvXv/6lgQMHysfHRxMmTFDXrl0TXH/KlCl6++23Jd3rtPvBBx+4IqbXGTlypPr376/06dNr06ZNKlOmjKT/P16Lq2BqxIgRGjBggKpXr65Nmza5ITW8EQVTABLkyMmUMUYZM2ZUwYIFVbt2bXXr1u2hnRyS1u7du1W1alXly5dPe/bs0TPPPOPuSF7n9OnTTnnf/PnzO+V9cW86ns6dO2vOnDmS4r+obbvo3a5dO02bNo1peVwsJCREBw8etD817+fnpxIlStA1ykmmT5/ulPd98803nfK+uOe3335Tt27ddP78efsy23fa/Te48+bNq4kTJ+rll192eUYA4Mbc0ykkJET9+vXTwoUL4/1dp0iRQi1atNDIkSM5RnOBqKgolSlTRkeOHJEkFStWTIGBgXE+MT9t2jQdPnxYklSiRAnt3btXvr6+bsuenNWpU+eJuhOvW7cuCdPAxpHt4uPjE+s6ZpMmTXgoB8leYGCgU9536tSpTnlfAHgU1apV044dOxQYGKgffvjBoTFvvfWWpkyZoipVqmjr1q1OTuidatasqa1bt2rgwIH64osv7MsTKphas2aNGjRooOzZs9u7HwPORsEUADylJkyYoN69e6tkyZIaO3asqlWr5u5IgEdr3bq1FixYYO+E16BBgzhvMqxatUpRUVEyxqhVq1aaO3eum5MnX7ZpXytXrkxBB+CgmTNnKjAwUJZl2YukChQoEOu77PTp0/bXfHx8NH36dL3++utuywzAO1GU+3S7cOGC1q9fH2cXwzp16ihXrlxuTug9xo8fr169eskYo48//liDBw+Ot4NbTEyMBg8erC+++ELGGLpSAwCQDOzZs0erV6/WgQMH4uwuXb58eTcnBNwra9asunbtmlasWKGAgACHxtgKc/z9/XX58mUnJ/ROtu2ybt061apVy748oYKpffv2qVy5ckqVKpXu3Lnj6sjwUhRMAcBTqEuXLpKknTt36vDhwzLG6Nlnn9WLL74oPz+/BKe/MMZo8uTJrooKeISlS5eqadOmMsaoTp06mjJlSrzdvM6cOaMuXbpo7dq1MsZo8eLFaty4sYsTewfbydGCBQvUrFkzd8cBPN7p06dVrFgxRUREKH369Bo4cKDeeustZc+ePdZ6ly5d0g8//KCvv/5af//9t9KkSaOjR48qX758bkoOONfGjRvtP99/Ee7+5Y/j/vcCAHepV6+eNmzYoObNm2v+/PkOjWnVqpUWLFigunXras2aNU5OCAAAnGHPnj165513tGvXrgTXq1ChgsaOHasKFSq4KBngWdKkSaOoqCjt2rVL5cqVc2jMnj17VKFCBaVOnVrh4eFOTuid4tsuCRVM7dixQ1WrVlX69Ol169YtV0eGl6InMwA8haZNm2ZvMW6MkWVZOnPmjM6ePZvgOMuyKJhysnr16skYk2BBzoNCQkLUsWNHGWO4mO0k06ZNkySVLl1av/32W4Lt9vPly6fly5ercuXK2r9/v6ZOnUrBlJNkyZJFV69epYjDA9m6f73zzjvKmjWrQ2OuXbum0aNHS5I+++wzp2XzZqNGjVJERIQyZMigjRs3qkyZMnGuly1bNg0cOFCNGzdWzZo1FRYWplGjRmn48OGuDewlChYsKB8fH61YsUKFCxd2aMyZM2fsU8YEBwc7OWHyZ/tdGmMUHR390PLH8eB7AYC7HDx4UNL/PzjliK5du2rBggU6cOCAs2IBAJIB2wMGFStWVNq0aR0ac+fOHe3cuVMSDxg40y+//KKOHTsqKirK3kE6VapU8vf3lyRdvXpVkZGRkqRdu3apevXqmjVrltq0aeO2zIC7ZMuWTSEhITpy5IjDBVNHjx6VJIeve+LRZcmSRRcvXtSpU6cc3i6HDh2SJHsnfcAVfNwdAADw6PLlyxfrT/78+ZU/f/6Hlse1HoUJzrV+/XqtX79eYWFhDo8JDw+3j4NzbN++XcYY9e/fP8FiKZuUKVNqwIABsixL27dvd0FC72QrLGA+cs8zePBgDRkyRKGhoQ6PuXr1qn0cnGPlypUyxuiDDz6It1jqfqVLl7Z/l61YscL5Ab3U6dOnderUKfvFakdERUXp1KlTOnXqlPOCeZn7p6mMa/nj/AEAT3Djxg1JUu7cuR0eY5sy8ebNm07JBABIHurUqaN69erp5MmTDo85f/68fRyc49ixY3rjjTcUGRmpFClSqGfPntq1a5fCwsIUEhKikJAQhYWFKSgoSD179pSvr6+ioqLUqVMnexEI4E2qVKkiy7I0YsQIhx58io6O1ogRI2SMUZUqVVyQ0DvZiqQepfv3jBkzZIxR1apVnRULeAgdpgDgKcTNNeDRXLp0SZIeavGakGLFikkSc5g7Ubt27bRjxw7NnTtXDRs2dHccwOOdOXNGkhQQEODwmAYNGmjw4MH2sUBytG7dukdaDngzprB8+vj7+ys0NFQnT55U2bJlHRpju/Ft60IB1zh16pQuX76s8PDwRAtv+cw8mSf9zooP2wXe6HEfFOABA+f517/+pYiICKVJk0bLli1TnTp1HlonRYoUKleunMqVK6e2bduqUaNGioiI0DfffKMpU6a4PjTgRp06ddL8+fO1b98+NWnSRFOnTo33YYOQkBB17dpVe/bskTFGnTt3dm1YL9K6dWstXbpUEydO1Pvvv59oM4fvv/9eGzdulDFG7du3d1FKgIIpAP+TIkWKJH9PprEAHGPrRpUmTRo3J0m+0qdPr+vXr+vKlSsOj7l27ZokKV26dM6K5fXeeecdTZ8+XTNmzFCtWrU4QX3KRUVFSZJDXdzweO7evSvp0Y7bfH3vnfLFxMQ4JRMej61bCPuYpFG7du1HWg7PYVmW9u3bp/379ztcZMC0r0+GKSyfPuXKldPy5cs1duxYtWzZ0qEx48aNkzHG4QIrPL5jx47pq6++0qJFixzu6MVn5sk9yXdWfNgugGNs55bOuJ+Ae1avXi1jjN599904i6UeVLt2bb377rsaNmyYVq9e7fyAkCRduXJF27Zt04kTJ3Tr1i37NZuEcC7jHE2bNlXz5s21cOFCrV69WoUKFdJLL72kypUrK3v27DLG6K+//tKOHTu0atUqe4fwFi1aqEmTJm5On3y98cYbGjlypH7//XfVqVNHY8eOjfXQtDFGlmUpKChI33//vX7++WcZY1SzZk01atTIjcnhbSiYAiCJJ0IAd1q+fLkkKW/evG5Oknw9//zz2rFjh+bMmeNwZ5Y5c+bYx8I5Ll68qB9++EFdu3ZV165dNXv2bHXo0EEvvvii/Pz8Er34xhSjnmXfvn2SpGzZsrk3SDKWJ08eBQcHa+vWrapUqZJDY7Zu3Srp0abxgfPNmjVLkpQ/f343JwHcZ/r06RoyZIhOnz79SOO4yfDk4jv/57qAZ2rfvr2WL1+u9evXq0uXLho9erTSp08f57q3b99W3759tXbtWhlj1KFDBxen9S4LFy7U66+/rjt37vD5cQN+50+n6OhoLV26VJs2bXK4yMAYozVr1rgoIRJjO3bLlCmTm5MkX7ZO+Y0bN3Z4TJMmTTRs2DD7WDhPaGio3nvvPf3yyy+PXGjLuYzz/PTTT+rUqZPmzZunyMhILV26VEuXLn1oPdvxQ5s2bTRjxgxXx/QqPj4+WrRokWrUqKFTp07plVdeUbp06exF73Xq1NGtW7cUEREh6d62ee655zR37lx3xoYXomAKgCTp888/d3cEPKGYmBhdvXpVt2/fVp48eXjKx0W6dOkS5/JBgwYpc+bMCY6NiIhQcHCwdu3aJWMMXRCcqFmzZtq+fbumTp2q6tWrJ9rJaObMmZoyZYqMMWrevLlLMnqjAgUK2E+QLMvSmjVrHL4IytO/SSu+CwT//e9/FRQUlOBY23eZ7TNTsWJFZ0SEpLp16+rPP//UsGHD1LZt20SLoEJCQjRs2DAZY1SvXj0XpUz+4vtdBgYGxnsD2yYiIkInTpxQaGiojDF66aWXnBER/zN06FBJ9zoaZs2a1aEx165d0+jRoyVxMduZPvnkEw0bNsyhm922p06RNJjC8unz+uuv6z//+Y+2bt2q6dOna9myZWrbtm2cT8zPnTvXfqO0evXqev31192cPvk6e/asOnbsqPDwcOXJk0cffPCB0qVLp27duskYo9WrV+vq1asKCgrSzJkzFRISoho1amjw4MFcr0kCfGc9nTZv3qw33ngj1nThCe3jbccASd1NzJvFN1X7hQsXlCFDhgTH2s79P/30UxljVKJECWdEhO49iHb+/PlHmo0gderUkuTweQ8ez7Vr11SjRg0FBwdzjuJhUqdOrTlz5qhTp04aN26cNmzYoNu3b8daJ126dKpdu7Z69er1SAWJeHz58uXTvn371KdPH82dO9c+24qkWAWexhi1bdtW48ePl5+fnzuiwosZi290AHhq3b17V9OmTdO0adO0a9cuRUVFyRij33//XcWLF7evt2TJEm3cuFGZMmXSJ5984sbEyY+Pj0+sCze23aqjF3Ns6/v7+2vXrl0qWLBg0oeEwsLCVLRoUV28eFGS1KhRI3Xp0iXOmwxTpkzR8uXLZVmW8uTJo2PHjjFlkpP4+Pg89lhjjEOtruGYJ/0us43x8fHRmjVrKAB1koMHD6pMmTKyLEu5c+fWyJEj1aJFi4duusXExOjXX39V//79dfbsWaVIkUJ79+5VyZIl3ZQ8ebF9Xp70VLpQoULatm0bXdmcyLatDhw4EOvYOCHBwcEqUqQI+xkn2rFjh6pWrSpjjAICAvTtt98qJiZG5cqVsxdE24oMxo8fb38idd68ecqRI4e74wNuce3aNTVp0kTbt2+XFP8xmm3fVLVqVS1ZsoSbDU70wQcfaPjw4cqYMaOOHDmi3Llz69ChQypVqtRD+5Dw8HB17dpVc+bM0WuvvaYff/zRjckB9zh69KgqVKhgn343VapUKlKkiPz9/R26NkCRXNJ48Nzxcc79bSZNmhTvg6R4Mu3bt9fcuXM1ZswY9ezZ06Ex48aNU+/evdWuXTv99NNPTk7ovT788EN9++23kqSXXnpJ77//vsqXLy9/f3+KOz3M3bt3deLECV29elXSvfsvhQoVonDdjU6fPq2lS5cqKChIoaGhunv3rrJkyaKyZcuqadOmKlq0qLsjwktRMAUAT6nQ0FA1b95cO3bsiHXDLq6bQgcPHtSLL74oY4x2796tMmXKuCFx8nR/hxzp3kGfMUa5cuVSypQp4x1njFGaNGmUK1cuVatWTT179mS6JCfbu3evAgICdO3atURPYC3Lkp+fn9auXavSpUu7KKH3mT59+hONf/PNN5MoCZ6keE2SUqVKpYoVK2rgwIE8oeVkX3/9tT755BP791jmzJlVrly5WMWfe/bs0fXr1+3HB1999ZU++ugjd8ZOVurUqRNrP7JhwwYZY1S+fPkEO0w9uO9/7bXXEu1IhSdDwZRn6ty5s2bMmKECBQrojz/+kK+vb7xFBpI0fvx49erVS6VLl9aOHTuUKlUqNyUH3CsmJkbjx4/XuHHjdOTIkTjXeeGFF9SrVy/16NHjiY/vkLCyZcvq999/1z/+8Q99/fXXkpTgd1lMTIwqVaqkvXv3au7cuWrVqpU7YgNu06lTJ82aNUspUqTQkCFD1Ldv30Q7GiHpJcW+IU2aNOrbt6+GDRuWBIkQl127dql69erKkSOH9uzZk+hDNqGhoSpfvrxCQ0O1adMmVapUyUVJvU+xYsV0/PhxNWnSRIsWLXJ3HABAEqBgCgCeQnfv3lW1atW0a9cu+fj4qHXr1qpVq5Z69+4d702hqlWraufOnRo0aJCGDBnipuTJ3+PcmIPrhISEqF+/flq4cGG8N0FTpEihFi1aaOTIkcqTJ4+LEwLucfr0afvPlmWpUKFCMsZoxYoVKlKkSLzjbAUgWbJk4QktFxo3bpz+8Y9/2FuLP1gEajvFS5cunb799luHn0jF42Hf77keZ9scPXpUxYsXV6pUqXTnzh0nJ/RORYsWVXBwsIYPH653331XUsJFBpLUpk0b/frrr7HGIGkxheXT5cKFCzp48GCsJ+ZLliypXLlyuTmZ9/Dz89PNmze1cOFCNW3aVJJ0+PBhlSxZUsYYRUREyNfXN9aYGTNmqHPnzmrUqJGWLl3qjtiA2+TNm1cXLlzQe++9p++++87dcbzWgw+uBQYGyhijf/7znwleA7v/4Y+yZctS7OYCU6dOVY8ePZQnTx6NGDFCzZo1e6jgLSYmRosXL9b777+v8+fPa9y4cXT9crJ06dIpIiJCy5Yt08svv+zuOIBHs00DmydPHoevG8fExOjcuXOS7k3nB7iCb+KrAPB2tp1ajhw57HNhx+fOnTsKDQ2VxM7MmaZPn65du3YpZcqUWrRokf3gvHfv3vGOadasmXbs2KHNmze7KqZXqlWrlowxdIzwULlz59a8efN04cIFrV+/Ps6bDHXq1OFGA7xO/vz541yeO3fueF+D+7zzzjtq27atpk6dqtWrV8f5XRYQEKDAwECHb3rj8XXq1EnGGKY9Sib27dsnSUyV6EQXLlyQJJUoUcK+7P6bP1FRUQ91an3jjTc0f/58zZkzh4IpJxk8eLCMMWrdurXD+46rV6/ax1Ew5Vq5cuXinMXNwsLCJEnPPvusfdn9U7nfuHFDWbJkiTXG9r23f/9+FyT0TuHh4Zo3b54kqVGjRonuzy9duqTly5dLujcFVkKdwvFkLl++LElq0aKFm5N4twc7dQcGBkqSmjdvzsMfbpBYcVPx4sW1f/9+tWrVSn5+fipbtmys7tL79u2zXwsoXbq0Nm/erC1btmjy5MmuiO+VMmTIoIiICKYKBxxQoEAB+fj46Pfff3d4H3Py5EkVKVJEPj4+io6OdnJC4B4KpgAkaOXKlWrUqJEyZMigU6dOJVowdfv2bZUoUULh4eFavXq16tSp45qgXuann36SMUbdu3d3+EmGsmXLSpKOHTvmzGheb/369e6OAAfkypVL7du3d3cMwGPFxMS4OwISkTVrVn3wwQf64IMP3B3F602bNs3dEfA/M2bMiHP5f//7XwUFBSU4NiIiQsHBwZoyZYqMMapYsaIzIkL3CqIkKXv27PZl93cpuHTp0kNTVefNm1eS9Oeff7ogIQAkLlOmTLp69WqsboT3F0gFBwc/VDB148YNSf9fOIKkN3fuXAUGBipPnjzq0KFDouv7+fnpk08+UUhIiFKlSqXXXnvNBSm9U7Zs2RQSEqK0adO6Owrus27dOklSwYIF3ZzEO02bNu2hjtEPMsbIsixdvXpVa9eujfWarbu0MUb79++3F+RSMOU8pUqV0vr163X69GmVKVPG3XHwgMuXL+vHH3/Upk2bdOLECd26dSveWSZsjDEKDg52UULv87gTnTFBGlyJgikACZo3b54sy1Lz5s0demre399frVq10owZMzRnzhwKppzk999/l3Sva5SjbDckrly54pRMAPAkYmJitG7dOm3btk0XL17U7du39eWXX8Z6cj4yMlLR0dFKkSJFogW8AADv07lz5zinqBw0aJDD72FZlnx8fNSvX7+kjof/sd0wvXnzpn1Zjhw5lCJFCsXExOjIkSMPFUzZulLdunXLpVmRMFvxGx1Z4I2ef/55bdu2TSdOnFCVKlUkSRkzZlT+/Pl15swZrVy5UpUqVYo1ZtWqVZKkzJkzuzqu11i8eLEkqV27dg9NiRgXX19fvfbaaxo+fLgWLlxIwZQT1ahRQ3PnztXBgwdVrlw5d8fB/9SuXdvdEbxavnz5Ei2Ygmfp3r271q1bp5kzZ+rVV191dxzc56efflLPnj3t54yOFtzwGfQstu324BSkgDNRMAUgQdu2bZMxRi+99JLDY15++WXNmDFD27Ztc2Iy73b9+nVJeuhpxYTYKukdnSsYAFxlyZIl6tu3r06fPh1r+YABA2IVTP3www/q06ePMmTIoJCQEKa+BAA8JK6Loo5eKE2VKpUqVqyogQMHcvPIiUqUKKGQkBAdPXpUNWvWlHTvd1+iRAkdOHBAc+bMUf369WONmTlzpiQ9VEgF92IKS9eKjo7W0qVLH/mJ+TVr1rgooXepWrWqtm3bpu3bt8fqZPTKK69o7Nix+vbbb1W9enXVrVtX0r3OR6NGjZIxRtWrV3dX7GRvz549MsaoVq1aDo+pVauWhg8frt27dzsxGd5//33Nnz9fo0aNUocOHRwqaAOSu1OnTrk7Ah5R27ZttXjxYs2egAjyQAAAsfZJREFUPVvDhg3TRx995O5IkLR27Vp17NjRfu6fP39+vfjii8qcOTOFN08Z28NSGTNmdHMSeBOOSgEkyHbQXrRoUYfHFC5cWNK9uWbhHP7+/goNDdXZs2ftU+0l5vjx45K4mA3As0yaNEk9evSwn9BmzZpVly9fjvPpnrfeekuDBg3SjRs3tGDBAnXs2NHVcQEAHuz+8w/LslSoUCEZY7RixQoVKVIk3nHGGKVJk0ZZsmTh4QIXqFmzplauXKl169bp7bffti9v166dfv/9d02ZMkW5cuVS27ZtFRYWpmnTpmnu3LkyxqhRo0ZuTJ68MIXl02XDhg3q3Lmzzpw5Y1+WUDGobfoenph3nsaNG2v48OH69ddfNXLkSPv+44MPPtDUqVP1999/KyAgQP7+/rpz545u374ty7KUIkUKplR2IttNtmeffdbhMbZpX0NCQpySCfdUrFhR33//vfr27auWLVtqypQpypo1q7tjAUCcNm7cGO9rXbp00cmTJ/XJJ5/o119/VYcOHVSsWDGlS5cu0fd9lIJeOG7YsGGyLEuZM2fWjz/+yHmjh3HknCQqKkrBwcH68ssvJd3r5gq4CgVTABIUHR0t6dG6EtnWvXPnjlMy4d5T2aGhodq1a5fD0/LNmTOHi9kAPMrx48fVq1cvSVK9evU0ZswYFStWLN4nf1KlSqVWrVpp8uTJWrlyJQVTAIBY8ufPH+fy3Llzx/saXK958+b69NNPtWTJEt28eVPPPPOMJKlfv36aNGmSTp06pS+++EJffPFFrHF+fn4aOHCgOyInS0xh+fTYt2+fGjZsqMjISFmWpTRp0qhIkSI8Me9mderU0eeff67o6GidP39e+fLlk3RveqV58+bp9ddf1/Xr13XlyhX7mNSpU2v8+PH2KfyQ9GzXJCMiIhweExkZKcnxjpR4PEOHDpUkVapUSUuWLFH+/PnVoEEDh4sMPvvsM2dHBAC7OnXqOFTksXv3boc7FBpj7PfbkLR27dolY4yGDBlCsZQbxXUf2bIslSxZ8pHexxij1q1bJ1UsIFEUTAFIUNasWXXhwgWdOHHC4fnlT5w4IeleFyQ4R/PmzbV27VqNGTNG77//vvz8/BJc/5dfftHixYtljFGrVq1clBIAEjZy5EhFR0erZMmSWrZsmVKlSpXomJo1a2ry5Mnau3evCxICAJ5mMTEx7o6AOJQoUULr1q1TdHR0rBsG6dKl07p169SxY0dt2bIl1piSJUtq5syZ9i4gSBpMYfl0GDx4sCIiIpQ6dWqNGDFCgYGBSpMmjbtjeT1jjD7//PM4X2vUqJGOHz+uX375RYcOHVJ0dLSKFCmitm3bKk+ePC5O6l1y5MihU6dO6eDBgw4Xph04cEASHdmdbfDgwfbiA2OMwsPDtXjxYi1evNih8RRMAXA1CmmfHrZzf6Y9dq/4PjOP+llq27at3n333SRIBDiGgikACSpTpowuXLigOXPmOFzR+/PPP0vSI1cNw3Fvv/22vvvuO509e1YvvfSSpk+fruLFiz+0XmhoqEaNGqVvv/1WxhiVLFlSbdu2dUNiAHjY2rVrZYzRu+++61CxlPT/076ePXvWmdEAAIATxVdgkz9/fm3atEnHjh2LVWTg6DTkcBxTWD49Nm/eLGOMPvnkE/Xs2dPdceCgLFmyqHv37u6O4XWqVaumkydPatKkSXrrrbccGjNhwgQZY+j85QIP3jClGAGI2/1T8D4OW9dDPL5169a5OwIewXPPPaf9+/crLCzM3VG82oMPEwwZMkTGGPXo0UPZs2ePd5ztHDNXrlyqVq2annvuOWdHBWKhYApAgl599VUtW7ZMv/76q+bNm6c2bdokuP7cuXP166+/yhij5s2buyakF0qdOrX++9//qk6dOtq9e7dKlSoVa07fjh076u+//9aJEydkWZYsy1KWLFk0f/58h1rJAoArnDt3TpJUunRph8ekT59eknT79m2nZAIAAO73/PPPxzq/QdJjCsunx507dyRJDRs2dHMSwPN16NBBP/74o4KCgtSvXz99//338V4HsyxL7777rnbv3i1jjDp06ODitN6Fzp+A4woWLPjYY5n2LWnQQfXp8tprr2nfvn1asWKFatas6e44XiuugilJ6tWrV5wNHwBPYSzK+AEkIDIyUsWKFdOpU6eUIkUK9evXT/369dOzzz4ba72zZ89q5MiRGj16tGJiYvTss8/q2LFjSp06tZuSe4c///xTb775prZt22ZfZrsQdP/Xe6VKlTR79mwVKlTI5RmTq99//12SVKxYMYc74wCILWPGjLp9+7bWr18f62TWx8dHxhgdOHDgoZOptWvXKiAgQFmyZNGlS5dcHRkA4IG6dOki6d5x8OTJkx9a/jgefC8AcJeSJUvqyJEj2rx5s6pWreruOIDHCwgIsHczLl++vPr27auaNWsqV65ckqQLFy5o48aNGj16tHbv3i1JqlWrFt1EAHgMHx+fxx5rjNHdu3eTMA3g+f7++29VqVJFp06d0vr161WhQgV3R4Kk6dOn25trPPPMM+6OA8SLgikAidq3b59q1aqlv//+216Mky9fvlgXGmxtYi3LUoYMGbRhwwamTXChzZs3a9GiRQoKClJoaKju3r2rLFmyqGzZsmrWrJkaNGjg7ojJjo+Pj3x8fPT777/HKugYOnSoJOmdd95R1qxZ3RUPeCoUK1ZMx48f15QpU/Tmm2/alydUMDV06FANHjxYFStW1I4dO1wdGXAJinKBR2Pbb0iKdXPg/uWPwrIsbjS4UHBwsLZt26aLFy/q9u3bHEcDDxg0aJC+/vprffXVV/rwww/dHQfweFevXlWdOnV08ODBRI8DLMtSqVKltG7dOvn7+7soIQAkbPr06YmuExYWpj/++EPz58/X+fPnVb16dftUpPdfY0PS6tKli4wx+uKLL+z3xxJz6dIlffjhhzyU42RnzpxRy5YtdfjwYb333ntq166dihYtqjRp0rg7mteqW7eujDF64403FBgY6O44QLwomALgkCNHjqhjx47au3evfVlcnYzKly+vmTNnqlixYi7PCLhSfAUdCRV6AIitR48emjhxourUqaO1a9fal8f3Obpx44ZeeOEF/fXXX/rHP/6hr7/+2h2xAaejKPfpZ1mWTpw4oatXr0qS/P39VahQIaZGdpICBQrYf7cnT56Mc/njuP+9kPT27Nmjd999V1u2bIm1/MH9/9ixYzVkyBBlypRJhw8fVsqUKV0dFXCrS5cuqWzZsoqIiNCuXbtUoEABd0cCPF54eLg++eQTTZw4Md7p3NOnT6/u3bvrn//8p9KmTevihIBnsJ17fvXVV/rHP/7h7jh4DFFRUXrvvfc0fvx4ffDBBxo2bJi7IyVrj3PtPzg4WEWKFOGhHBc4dOiQ6tWrp8uXLzs8hmksnSdlypSKiYnR6tWrVbduXXfHAeJFwRSAR7Jq1SotWbJEe/futR90ZM2aVeXKlVPTpk1Vv359NycEXCN16tSKjo7Wzp07Vb58eftyCqaeDtHR0dqzZ48OHDgQ62Z2yZIlVa5cOW7EucjevXvtLZInT56szp07S4r7c3TlyhW1bt1aGzZsUMqUKfXHH38of/787ooOOBVFuU+vFStWaMyYMVq/fv1DN+fSpUununXrqnfv3nrppZfclBDwDEuWLFGbNm0UGRkZ6wGcuL7jbt26pdy5c+v27dv65Zdf1KJFC3dETjaYwvLp9Pvvv+uVV15RRESEvvjiC7Vt21aZMmVydyzA4924cUNr166N8zpm3bp1+Ry5ydWrVzV16lStXr1aBw8efOi6TEBAgAIDA+n65QJp0qRRVFQU074mA/Xr19f69eu1bNkyvfzyy+6Ok2xRMOW5Ro0apQEDBigmJkaPUvrAdnGePHny6OLFiwoKCmJGIng0CqYAAHgM+fLl0/nz5zV+/Hh169bNvpyb2Z4tLCxM//znPzV58mT7BbkH+fn5qWvXrho0aJAyZszo4oTe5/3339f3338vY4xat26tVq1a6bXXXpMxRhMmTFC6dOm0ZcsWzZ49Wzdv3pQkDRkyRIMGDXJzcu9w5MgRTZw4UZs2bdKJEyd069YtxcTEJDiGJ7OeHEW5T5/IyEh17txZc+bMkaR4L87Zuh21a9dO06ZNY8pFeKULFy6oaNGiCgsLU4kSJfTdd9+pRo0aypgxY7zfca+//rp+/vlnde3aVRMnTnRT8uSBKSyfXqdOnVLlypV1+fJlGWOUNWtWpUuXLsExxhgFBwe7KCEAJG7ChAkaMGCA/eGCB4+bbfuidOnSafjw4bGuuSHpFSpUSKdPn9b27dtVsWJFd8fBE5g7d65ee+01NW7cWEuWLHF3nGTrca7LHDp0SKVKlVKaNGni7XqIJ7Ns2TK98sorku5toxo1aqh06dLKnDmzfHx8Eh3/+eefOzuiV2rcuLFWrFih2bNnq127du6OA8TL190BAAB4GtWqVUuzZ8/Whx9+qODgYBUtWjRWV6L//ve/CgoKeuT37dSpU1LGxH2OHTumhg0b6syZMwk+ZXL16lV99913mjNnjlasWKHnn3/ehSm9z/DhwxUREaHx48frl19+0S+//GK/QNq9e3f7erZt9u6771Is5SIjRozQwIEDFR0d/UhPZuHJ5ciRQ+fPn9fu3btjFUzBc3Xo0EELFiyQZVny9fVVgwYNVLlyZeXMmVOSdPHiRe3cuVOrVq1SVFSU5syZo+joaM2dO9fNyQHXGzlypMLCwpQ/f35t2rRJmTNnTnRMnTp19NNPP2n37t3OD5jM5cuXL87CqPiWwzPMnz9fXbt21a1bt2RZlizLUmhoaKLj2KYAPMmwYcP0ySef2M8vM2XKpLJly8Y6Zt67d69u3LihsLAw9ezZU9evX2eqOCeqVauWZs6cqd27d1Mw9ZQrUqSIJD3W9Wg4l20K8hw5crg5SfL17bffSrrX0WjZsmUqVaqUmxNBkt566y399ttv+s9//kPBFDwaHaYAwIOlSJFC0sPdOmzLHwedP5LGoUOHVKlSJYWHh8e6CG3brT7OhWm2jfPcuHFDJUqU0IULF2RZlkqWLKk333xTlSpVsp+s/vXXX9q1a5emT5+uAwcOSLp3knXw4EHa9LvAqlWrNGzYMG3YsOGhDkbGGFWpUkWDBg1So0aN3JTQu/z2229q3LixpHu//8qVK6t8+fLy9/fnySwX6Nixo2bPnq1MmTKpW7du9qLczp07yxijL774Qnny5Hnk96Uo1zmWLl2qpk2byhijOnXqaMqUKfFOGXrmzBl16dJFa9eulTFGixcvtn/WAG/x4osv6tChQxo1apR69+5tX57Q09qbNm1S7dq1lTlz5ni7hALJ1bZt21SrVi17F6/8+fPrxRdfdPiJ+alTpzo7IgAk6uDBgypbtqzu3r2rXLly6dtvv1WbNm1iPXwoSdHR0Zo3b54++OADhYSEyNfXV3v37lWJEiXclDx52717t6pWrap8+fJpz549euaZZ9wdCY9p/fr1qlevnlKnTq3w8HB3x0k2hg4dGuvvgwcPljFGPXv2VPbs2RMcGxERoeDgYC1atEgRERFq3769Zs2a5cy4XitLliy6fv26fvjhBwUGBro7Du7TqVMnzZo1S507d9bo0aOVPn16d0cCHkLBFAB4MNvFzwenOHDkomh8mC4h6ezevVsDBw7Uxo0bFRkZ+cTvx7Zxno8//ljDhg2TMUZDhw7Vxx9/HG9Rm2VZ+vrrrzVo0CAZY/Thhx/qq6++cnFi73Xr1i3t3btXoaGhunv3rrJkyaIyZcooa9as7o7mVRo2bKiVK1fKz89PixYtUvXq1d0dyatQlPt0adOmjebPn68yZcpox44dD930eVBUVJQqV66s/fv3q2XLlpo3b56LkkKSbt68qVu3bjl0zJUvXz4XJPI+mTJl0t9//61t27apUqVK9uUJFUzt379fZcuWla+vb5IcdwNPkyZNmmj58uXKlCmTfvzxRwptgUdw7do17d+/X5cvX1Z4eHiinXN5wMB5evTooYkTJypbtmzatWtXosdZZ8+eVcWKFXXp0iV169ZN48ePd1FS7zNhwgT17t1bJUuW1NixY1WtWjV3R8JjCAwM1PTp01WgQAGdOHHC3XGSjQenrX6c6zKWZSlNmjTatm2bSpcuneQZIWXOnFm3bt1SUFCQypYt6+44+J8ZM2bIsiyNHDlSBw4cUObMmdW0aVO9+OKL8vPzS7QxBMdlcBWm5AMADxZfhw46d3iG8uXLa+XKlYqOjtbly5d1584dFSpUSMYYrVixwt4KGe63YMECGWPUtm1bffLJJwmua4zRxx9/rAMHDmjOnDlasGABBVMulDFjRtWqVcvdMbxeUFCQjDH67LPPKJZygxIlSmjjxo3xFuXyzItn2b59u4wx6t+/f6LFUpKUMmVKDRgwQB07dtT27dtdkBCrVq3SuHHjtHnzZoe7E1Fk6Dy23+uDHSUTcuPGDUlShgwZnJIJ8GS247IhQ4ZQLAU4aP369fr888+1efNmh8cYY7gx50S2DqsDBw50qCj92Wef1Ycffqj+/ftrzZo1Lkjonbp06SJJev7557V//37VrFlTzz77rEM3s40xmjx5squiIh7Hjx/X8OHDNX36dBljOFZwgvuvwdgKpRy5LpMmTRrlypVL1apV04ABAyiWcqIiRYpoz549unbtmruj4D62Tvk2165d08yZMx0ay3EZXImCKQDwYBRMPR18fX2VM2fOWMty584d73Q8cL3Tp09LuneQ7qjOnTtrzpw59rGAN7l9+7YkqUaNGm5O4r0oyn16XLp0SZIe6oiTkGLFikmSLl++7JRM+H99+/bV2LFjJVFs6Cly5sypU6dO6cSJE6pSpYpDY3bu3CmJrl/wThyXPb3++usvLVmyRJcvX1bBggX1yiuvKF26dO6OleyNHz9effr0kWVZ7Ps9yPnz5yXpkboX2R7eCQkJcUomSNOmTbPfzDbGyLIsnTlzRmfPnk1wnGVZFEw5UaFChRJdJyYmRtevX9etW7fsy7Jnz57og6J4NA8+5GHrOHXw4MFHugYA52rfvr12796thQsXql69eu6Og/s8eCzGsRk8EQVTAAAkIVsxW2JzmMO1MmbMqIiIiEfaLrZ16WQAb5QnTx6dOHGCaY88AEW5ni99+vS6fv26rly54vAY21OP3DR1rtmzZ2vMmDGS7j3d27x5c5UvX17+/v5PNMU1nkzNmjV18uRJzZs3Tx06dEh0/cjISE2YMEHGGNWpU8f5AQEPU7BgQR06dMheOAXPcOTIEX3++ecyxmjChAnKnDlzrNcXLVqkDh06KDw83L4sb968+u9//6syZcq4NqwXOXLkiPr27SvLslSqVCkNHTpUKVOmVJMmTWSM0Z9//qmrV68qKChIkyZN0p49e1SjRg1NmDCB4zIns3UqepQOnrYplDluc558+fI91pTvcK5Tp0498piqVatqypQpypUrV9IHgp3tM5MqVSp3R8F9+vTpo7lz52rChAlq0KCBmjZt6u5IkHTy5El3RwAcQsEUAABJiO5fnqlUqVJat26djh8/7vA85sePH7ePhXNFR0dr6dKl2rRpk06cOKFbt27ZL4zGxxhDW34natq0qUaNGqUtW7aoatWq7o6D/6Eo1zM9//zz2rFjh+bMmaOAgACHxsyZM8c+Fs4zYcIESfemdFm7dq2ee+45NyeCdK+L54wZM7Ro0SKtWrVKDRo0iHfdyMhIderUScHBwfLx8dHbb7/twqTJU0JT6zwuprB0rpYtW+rgwYNasWIFXaY8yMKFC/XLL7+oevXqDxVLhYaGqmPHjg8VuZ09e1ZNmzbVkSNHeDDHSUaPHq27d+8qW7Zs2rRpkzJmzKhDhw7ZXy9YsKAKFiyo8uXLq1u3bvroo4/07bffqk+fPlq9erUbkyd/+fLl05EjR7RmzRqHu0zZzvnpMOk8j1OYA+d78803E13Hx8dHGTNmVMGCBVW7dm2KcV2Ez4xnunDhgiZNmqRu3bqpRYsWateundq1a6eiRYs6VBDNfsY5eNgTTwtj0fsMAJIlWr97jr/++ksHDx7U1atXJUn+/v4qWbKkcuTI4eZk3mPevHlq166dqlSpos2bNyf6dGJMTIyqV6+unTt3avbs2WrXrp2LknqfzZs364033tCZM2fsyxI6PLW1iDfGJFpUhccXEhKi0qVLy9fXV3v37n2owxGA/zds2DB9/PHH8vHx0Q8//JDo9K8zZ85UYGCgLMvS119/rX/84x+uCeqF/Pz8dPPmTU2aNEldunRxdxzcp3379pozZ45SpUqlfv36qVWrVqpSpYqMMVq8eLEyZ86sLVu2aOLEiTpx4oQkqWfPnvaOYXh8zujSwXGZc926dUsVKlRQSEiI1q1bpwoVKrg7EiQFBARo3bp1+uqrr/Thhx/Gem3w4MEaOnSofH199c0336h+/fpasWKFPvroI1mWpe+++07vvfeem5InbyVKlNDRo0c1dOhQ+7RUhw4dUqlSpeL9rrJtS44XnOu9997TqFGjlDFjRm3evDnRh9MOHjyo6tWr6++//1a/fv00YsQIFyUFADxtbFMlSv8/ZaijePgDAAVTAPAUovW757MsSxMnTtSYMWN0+PDhONcpXry4+vTpo7fffpv21y7QtWtXTZ06Va+88oomTpwYbwHIX3/9pe7du2vRokUKDAzU5MmTXZzUexw9elQVKlRQeHi4LMtSqlSpVKRIEYenSlq3bp0LUnqvrVu3qnnz5sqQIYPGjBmjxo0buzsS4kBRrvuFhYWpaNGiunjxoiSpUaNG6tKliypXrqzs2bPLGKO//vpLO3bs0JQpU7R8+XJZlqU8efLo2LFjFLQ7UYYMGRQeHq6goCCHO0zCNSIiItSqVSstW7YsweNg2yWrli1bas6cOU7pjuRthgwZkuDrS5cuVVBQkKR7hQeVKlWy71P++usv7dq1SwcPHpQxRhUqVLAfH9Bp17nOnTunNm3aaP/+/XrvvffsT8ynSZPG3dG8VtGiRRUcHKzly5frpZdeivVaqVKldPjwYQUGBuqHH36wL+/evbsmTZqk2rVrcy7jJJkyZdLff/+tJUuWqFGjRpKkw4cPq2TJkjLG6M6dO0qZMmWsMXPnztVrr72mOnXqaO3ate6I7RVOnz6tYsWKKTIyUhkyZNCnn36qwMBAZcmSJdZ6V65c0dSpU/Xll1/qxo0bSpMmjY4ePUr3DwBAvJ7koRAe/gBAwRQAPIW+/vprffLJJ6pevbo2bdoU67XQ0FAVLlxYf//990Pj8uTJQ+t3F7h27ZqaNWumrVu3Soq/W47t5lC1atXsT9LjycyYMSPB18eOHatdu3YpTZo0eumll1SxYsVYN7N37dqllStXKiIiQhUqVFCvXr0kSZ06dXJFfK/TqVMnzZo1SylSpNCQIUPUt29fvp88RL169STd6zT1xx9/yBijzJkzq0iRIokWdzBdovNRlOt59u7dq4CAAF27di3R37dlWfLz89PatWtVunRpFyX0TiVLltSRI0e0fv161axZ091xEIdJkybpm2++UXBwcJyv582bVx9//LF69Ojh4mTeaejQoRo8eLBKly6tiRMnqmLFinGut2vXLnXv3l379+/X559/rs8++8zFSb3L/YWCPDHvOTJnzqxbt25p9+7dsR5Mu3z5sv0cc9WqVfbjauleQWLTpk2VLVs2/fXXX25InfylTp1a0dHR2rNnj/046/Tp0ypYsKCMMbpw4cJD01vv2bNHFSpUUPbs2e0F8HCOGTNmKDAw0P53Y4wKFiwY67rMyZMnZVmW/ftu2rRpeuONN9yY2jtFR0fr2rVrku51bfX19XVzIsC17t9/JxWulznP9OnTn2i8I9Ng4sncvXtXCxcu1OrVq+N88DMgIEDNmzfnISm4BQVTAPAUovW757IsS7Vr19bmzZslSVmyZFHbtm1VuXJle0ejixcvaufOnZo7d64uX74sY4xq1KihDRs2uDN6snB/+92EJHSj4cHXuMngPHnz5tWFCxf03nvv6bvvvnN3HNznwVbWjmC6RNegKNdzhYSEqF+/flq4cGG8n4EUKVKoRYsWGjlypPLkyePihN7ns88+05dffqlPP/1UgwcPdnccJODw4cMKCgpSaGio7t69qyxZsqhs2bIqV64cRZ8usmbNGjVo0EBFixbV7t27lT59+gTXDwsLU7ly5fTnn39qxYoVCggIcFFS78MT857JVpizZcsWValSxb584cKFatmypVKnTq0bN24oVapU9tdshTkpU6ZURESEO2Ine7ly5VJoaKg2bdqkatWqSZJu376tjBkzSpI2bNigGjVqxBqzcuVKNWzYUKlSpdKdO3dcntnbLF26VN27d1dISIh9WVznnrlz59bEiRPpdOxCR44c0bhx47R69WodP37cvj2MMSpSpIgaNGigHj16qHjx4m5OCjif7bpYUtxC53oZvN1vv/2mbt266fz58/Zl9+9jbPLmzauJEyfq5ZdfdnlGeDfKwgE8slOnTuny5cv2KZQSUqtWLRel8i5nzpyRpDinFpk/f76MMerUqZPeffddSffawR8/flyTJk3SokWLKJhyotmzZ2vz5s0yxqhDhw4aN26c/cLc/Tp16qRhw4apV69emjlzpjZv3qyffvpJ7du3d0Pq5MXRE9mE1qOe3DUuX74sSWrRooWbk+BBtWrV4ga1B7IsS6+++qq2bNkiybGi3K1bt+rVV1+lKNcFcufOrXnz5unChQtav359nE/M1alTR7ly5XJzUu/Rv39/zZw5U99//71ee+01FStWzN2REI/ixYtz883N/v3vf8sYo48++ijRYilJSp8+vT766CN17dpVo0ePpmDKiZju0DP5+/srNDRUZ86ciVUwZescUaFChVjFUpLsD+LQVdd5ihUrptDQUB0/ftxeMJUuXToVKVJEx48f16JFix4qmFqwYIEkKVu2bC7P642aNGmiU6dOacGCBYl2mXhw+kQ4z8CBA/Xdd98pJibmoWtilmXp2LFj+uOPPzR+/Hh98MEH+uqrr9yUNHlJrFP+46JT/pPjuhiQNGbOnKnAwEB790hJKlCgQKzrmKdPn5ZlWTp79qyaNGmi6dOn6/XXX3dnbHgZOkwBcMixY8f01VdfadGiRbp586ZDY+jK4jy0fvdcTZo00fLly1WnTh2tXbvWoTF169bVhg0b1KhRIy1dutTJCZO306dPO+V98+fP75T39XbPPvusQkJCtGvXLpUrV87dcQCP9+OPP+qNN95ItChXkv7++297Ua4xRrNmzaIoF17pjz/+UNOmTXXp0iV98cUXat++vfz8/NwdC/A4efLk0cWLFx/puMzWLSdnzpyxOoUA3qBhw4ZatWqVmjZtqoULF0qSwsPDVbBgQV26dEmDBg3SkCFDYo2ZN2+e2rVrp2LFisU7rTKezKeffqovv/xSXbp00Q8//GBf/vHHH2vYsGFKlSqVxo8fr7Zt2yosLEzTpk3TJ598opiYGHXs2PGJp/QBnkZ9+vTRuHHj7DeyX3jhhTgfyrF9bxlj1Lt3b40aNcptmZMLRzvlPwruyQDwFKdPn1axYsUUERGh9OnTa+DAgXrrrbcemh750qVL+uGHH/T111/r77//Vpo0aXT06FHly5fPTcnhbSiYApCohQsX6vXXX9edO3ceqesKLUadh9bvnsvW/n3evHlq2bKlQ2N+/fVXtW7dmhsN8Drt27fX3LlzNXXqVJ5+AxxAUa5n2rhxoySpYsWKSps2rUNj7ty5o507d0qiI6szFSpUSNK9qXhCQ0NljJExRlmzZlW6dOkSHGuMUXBwsCtiAh4hbdq0ioyM1OrVq1W3bl2Hxqxfv1716tVT6tSpFR4e7uSEgGeZNm2aunTpImOM2rRpoxo1amjOnDnasmWLfHx8dPDgwYc6Gw4YMEAjRozQyy+/rOXLl7spefK2Y8cOVa1aVf7+/jp37pzSpEkjSbpy5Yqef/55Xbt27aExlmUpbdq0CgoK0gsvvODqyIBbbdmyRTVr1pQxRi+88IImTpxo7872oG3btqlHjx46cOCAjDGxpr7E43mSaXfjwz0ZAJ7i/fff1/fff68MGTJo48aNsZo/xGX//v2qWbOmwsLC9O6772r48OGuCQqvx5R8ABJ09uxZdezYUeHh4cqTJ48++OADpUuXTt26dZMxRqtXr9bVq1cVFBSkmTNnKiQkRDVq1NDgwYOVIkUKd8dPtmj97rlsbcQLFizo8BjburaxgLd4//33NX/+fI0aNUodOnSQry+HpkBC9uzZY3+a11F9+vTRhg0btHfvXicm82516tSRj4+Pfv/9d4enFDt//rx9HE//Os+pU6di/d3WAj40NDTRsUy/4Br79+/Xpk2bdOLECd26dSvRmzvGGE2ePNlF6bxL7ty5derUKc2fP9/hgqlffvlFkphqFF6pU6dOmjJlijZv3qx58+Zp3rx59tcCAwPjnAb2119/lTGGAgMnqly5sqZOnaro6Ghdu3bN/v2UJUsWrVixQm3bttXJkydjjcmePbtmzJhBsRS80oQJEyTduza5ZcsWZcqUKd51q1atqo0bN6p8+fI6efKk/vOf//B99oQe/D4CgORk5cqVMsbogw8+SLRYSpJKly6tAQMGaPDgwVqxYgUFU3AZ7koBSNC///1v3b59WxkzZtSOHTuUO3duHTp0yP667UJqq1at9Nlnn6lr166aM2eOJk+erB9//NFdsZO90qVLa9WqVZo9e7batm0r6V7r93nz5skYE2sqPhvbVGU5cuRwaVZvkylTJl25ckUhISEqW7asQ2MuXLggSXrmmWecGQ3wOBUrVtT333+vvn37qmXLlpoyZYqyZs3q7liAx6Io13M9buNmGj4715tvvunuCIjHsWPH1KVLF23fvt3hMZZlUTDlRA0bNtT48eM1YcIE1apVy36eGZ9ffvlFEyZMkDFGjRs3dlFKwHP4+Pho+fLl+vzzzzVv3jxdvHhRuXLl0ptvvqlPP/30ofWXLFmiU6dO8Zlxgfj2/+XLl9fRo0e1du1aHTp0SNHR0SpSpIhefvnlRDtPAsnVpk2bZIzRRx99lGCxlE2mTJn04Ycfqnv37tq0aZMLEiZv+fPnd3cEAHCaM2fOSJICAgIcHtOgQQMNHjzYPhZwBQqmACRo9erVMsbonXfeUe7cuRNcN23atJo1a5b++D/27jw8puv/A/j7ZBOELNZYQxtLxJIQCbLZay0piaotWkUtpaqLXdH6FS1Nm6jUEkrttas1m4jIIkSoJYJqdiEiIev9/eGbqUgkg8zcJPN+PU+fJ+6cM8+baWbu3Ps5n3P9OrZv3w4XFxe89957akqqWUaMGIHjx4/j4MGDGDFihKL1e1JSErS0tPD+++8XmRMSEgKAX8RUzdLSEv7+/ti4cSMGDBig1JyNGzcq5hJpkm+++QYA0LlzZxw6dAhNmzZF79690apVK6UuWC9YsEDVESu95798Pr8v/Jt+KeUe86rBotzKIz8/HwDYkVXFCs6xqHz5999/4ejoiJSUFEXRoIGBAYyNjVWyLQkpZ86cOdi6dSvS09Px/vvvY9u2bRg3bhxsbGxQt25dCCGQmJiI0NBQ+Pj44MCBA5AkCTVr1sTXX38td3wiWVSvXh0rV67EypUrSx3brVs3RScRXpeRj66uLvr27Yu+ffvKHaXSKji/FUIU6qT6Jue9Lz4XlZ2EhAQAUPr7JQBYW1sDABITE1WSiaiiycvLw4MHD/DkyZNSF0XxehlpkoIO0q9yDlCwA0XBdTMidWDBFBGVqGAbi+fb6z6/PUVubm6hLZS0tLQwffp0jBs3Dhs2bGDBlIqw9Xv5NWzYMPj5+eHPP//EokWLsHDhwhK3dFmyZAn27NkDIQSGDx+uxqSapXnz5q89VwiBmJiYMkxDBRYtWqT4/RBC4MmTJzh48CAOHjyo1HwWTL25gu5DL16AfpUORi/ixWzVYVFu5VHQ+VOZVdxElc2yZcuQnJwMIQQ++ugjfP7552jRooXcsTRew4YNcfDgQQwaNAiPHj0q9ZxMkiTUqFED+/fvR8OGDdWYlKh8CAgIAPBsS0pzc/NSxxsbG8PY2FjVsTReQcf10aNHw93dXeY0mullxQLsrFo+6evrIzs7GxkZGUrPKRhbpUoVVcUiKvdSUlLg4eGBffv24cqVK0oVd/B6GWmahg0bIiYmBmfPnkXnzp2VmnP27FkAKLWBB1FZYsEUEZWo4AtQ48aNFcee7/qRlpaGWrVqFZrTpk0bAMDFixfVkFAzsfV7+TVhwgR4eHjg2rVrWLJkCfbu3Ytx48bB1ta20MrskJAQ+Pj44PLlywCAVq1aYcKECTKnr7wKij+VIYQodCGvpII3enMvXjTlRVT14sXsioVFueXDyzqwxcfHw8DAoMS5WVlZiImJwfz58yGEUJw3E2mSv/76C0IIjBkzBuvWrZM7Dj3HwcEBUVFR+Oyzz7Bv3z7FiuAXaWtr491338WqVavYKYc0lrOzs2KbUGUKpkg9AgMDkZ+fX+y1MVKPhQsXvtJxklezZs1w8eJFHDx4EI6OjkrNKSiofpPFiVSytLQ0rFmzBsCza82mpqYljo+Pj4e3tzcAYNasWahevbrKM2qys2fPwsXFBcnJybx+RlSC7t274+bNm1i+fDlcXV1LLYKKi4vD8uXLIYRQFMETqYOQ+G5ORCWoU6cOUlNTERQUBDs7OwBAeno6DA0NIYRAcHBwkcrg06dPo1evXtDT08PTp0/liE0vePDgAR49egSArd/V4fbt2+jZsydiY2NLLbaRJAnNmzfH6dOn2ZJXhZRZWZqRkYHr16/j0qVLEELAysoKbdu2BcAtfajy8vHxUfw8duzYYo+/juefi8pOTk4O2rVrh2vXrimKbUorypUkCa1bt8bFixcLdQWl1/diK/GCr9SvU2Dr7e2N8ePHl0kuoopCX18fOTk5OHnyJLp37y53HHqJxMRE+Pr6IioqCqmpqQCedchp27Ytunfvjvr168uckEheNWvWREZGBs6fP4+OHTvKHYf+p2HDhkhISEBYWNgrbTFGpKnmzZuHb7/9Fnp6ejh8+DB69uxZ4nhfX1/069cPOTk5mDNnDpYsWaKmpJrF09MTU6dOhbm5Oa5du1bqeEmS0KpVK9y8eRPr1q3Dhx9+qIaUmun+/fto1aoV7t+/DwMDA3z00UcwMjJSdNH/7bffkJqairCwMBw4cABPnz5Ft27dFK8Jr5eRJrl8+TI6dOgASZLQoEED/Pjjjxg6dGiR62r5+fnYu3cvZs2ahX/++Qfa2tq4cOECu+WT2rBgiohKZG9vj+DgYGzZsgUjR45UHG/WrBnu3r2LxYsXY968eYXmfP311/i///s/1K1bV7EPOpGmycjIwKJFi7B+/Xo8fPiw2DFGRkb46KOPsGDBglI7UpD6REdH48MPP0RUVBS2bNkCFxcXuSMRESmwKFd+Wlpab/wc+vr6mD59OpYvX14GiehlNm/e/Ebzx4wZU0ZJ6HmmpqZISkrizWwiqtAsLS1x9epV+Pn5wcHBQe449D/9+/fHsWPHsG3bNri5uckdh6jcS0lJwdtvv4309HRoa2vj448/xvjx49GhQwfF9578/HxERkZiw4YN8Pb2Rk5ODgwNDXHz5s0iO09Q2Rg0aBCOHDnySkVpCxcuxJIlSzB48GDs27dPtQE12OLFi7F48WJUqVIFYWFhaNOmDaKjo9G2bVsIIQp1aI2Pj8fIkSMREBCAzz//HP/3f/8nY3IieXz33XeYO3eu4hqmkZERrK2tCy38jIiIwMOHDxULEr/99lt89dVXcsYmDcOCKSIq0ezZs/HDDz9gypQp+OmnnxTHp02bhl9++QU1atTAvn37FCuDd+7ciXHjxiErKwtDhgzBnj175IpOVC5kZ2cjPDwcly9fVqzMNjExgaWlJTp27Ag9PT2ZE1JxHj9+DCsrK8THxyMsLAytWrWSOxIRkQKLcuX1Ygc2d3d3CCGwZMkSNGzY8KXzhBDQ19eHqakprKys+LqogZaW1mtvrSuEQG5ubhknIuC/G0C8mU1EFdmXX36JlStXYt68eVi8eLHcceh/9u7di2HDhsHJyQm+vr5yx6HnBAQEAABsbGxQtWpVpeY8ffoU58+fBwClt4ujV3f8+HEMHjwY2dnZinNnPT09mJiYQAiB+/fvIzs7G8CzRTl6eno4dOgQevXqJWfsSq1x48aIi4vDoUOH0K9fP6Xm/PXXX+jfvz+aNGmC27dvqzagBrOzs0NoaCgmTZqEX375BQBeWjAFAE+ePEH79u0RExODEydOcJsx0kienp744osvkJmZCaBoh/aCUpVq1aphxYoVmDx5stozkmZjwRQRlcjX1xc9e/ZEgwYNcOfOHUWrxLt378LCwgJPnjwB8KwA5OnTp8jMzIQkSdDW1kZgYKBiGz8ioorGy8sLU6ZMgbu7O9avXy93HCKiIliUWz4UFOVERUXBwsJC7jj0nDfpBlbcxW4qGydOnEDfvn3RvXt3nDp1Su44RESvJSEhAW3btkV2djaCgoK4ZUg5MmbMGPz+++8YN24cPDw8UL16dbkjEZ6dl2lpaeHSpUtKnzPHxMTA3NwcWlpaLGRXscjISHz88ccICwsrcVynTp3g7e2N9u3bqymZZqpSpQpyc3MRHh6ODh06KDUnMjIS1tbWqFKliuKeDZW92rVr48GDB9i9ezeGDh0KALhy5QosLS0hhEB2dnaR7cYKrjEPGzYMO3fulCM2kexSUlKwceNGnDx5stjrmL169YK7uztq164tc1LSRCyYIqISSZKEb775Brm5uZgwYUKh7VyOHj2KDz74oEhngypVqsDLywvjxo1Tb1giojIUGhoKW1tbrsxSk1OnTmHTpk0IDg5GQkICnj59WuRCakBAAC5fvoyaNWti1KhRMqYlIvqPv78/AKBz585Kr5Yn9bhz506pYzIyMnD9+nVs27YNu3fvRrdu3bBu3TpUq1YNTZs2VUNKzVSwjfvEiRPx008/QVdXV+5IGuNNt6p8GW5hqToFRQbffvstvvjiC7nj0HNCQkLw3nvvIT09HV9++SVGjhwJMzMzuWNptM2bN0OSJPz444+IioqCkZERBg0ahHbt2sHY2LjITewX8b1MdV5nkUFBwRQL2dUnNDS0xJvZNjY2MifUDIaGhnj8+DECAwPRtWtXpeacPXsW9vb2qFatGh4/fqzihJpLT08PeXl5CA0NhbW1NQDg1q1bePvttxUd2YyMjArNKbjG3LhxY6W+o9LLqaJDlxCCC3mINBwLpojojdy/fx+7d+9GdHQ0cnNzYW5uDldX1xK3IyEiqgjOnz8POzs7rsxSsczMTIwdOxZ79+4F8F8L3uIupAYFBcHBwQFCCPz9998wNzeXJTMREVVOO3fuxMiRI+Hs7IwTJ0689nZ+9ExphTnr1q1DcHAwTE1NMWzYMLRq1QrVqlUr9Xl5M/vNvMlWlS/DLSxVS19fHzk5OThz5gy6dOkidxz6n+bNmwN4tp17SkqK4vfKwMAARkZGJRbmCCEQExOjlpya5sX3OEmSlH7P43uZar1OwdSNGzfQsmVL6OjoKLaEo9dz4MABAEDPnj3Zda0CaNWqFW7cuIEff/wR06dPV2rOTz/9hBkzZqB58+a4efOmihNqLhMTE6SlpSE4OBidO3cGADx8+FCxhWVxXcECAwPh5OTEa8xloOCzpKTShpdt91bScRblEmk2HbkDEFHFVqtWLUycOFHuGEREZe7YsWMAnq3qItVxdXXF0aNHIUkSOnfuDEdHR6xcubLYsd26dYOlpSWio6OxZ88efPXVV2pOS0RElZmrqyuOHTuGTZs24ddff8WkSZPkjlShjRs3Tqmb1PHx8fDw8FDqOYUQLJgqA1w7WbE0aNAAd+7cgY4OL+OWJy92IS74vUpPT0d6enqJc1mQq1ovvsfxPa/iKujEwusyb27IkCHFbok4fvx4CCGwdOlSmJqaypiQnufg4IDr16/D09MTkydPLrUba05ODjw9PSGEgL29vZpSaqa3334b4eHhuHv3rqJgysjICPXr10diYiJ8fX2LFEydOXMGAFisWAYcHR1LPI+Ki4vDjRs3ADw73zIzM0O9evUAAImJibh9+7aimNrc3BwNGjRQS24iKt/4TZuISjR+/HgAQL9+/TB8+HCZ0xARqcf27dvx3Xff8UKDiu3ZswdHjhyBEALr1q3DRx99BAAvLZgCABcXF1y+fBn+/v4smCIiojLn6uqKjRs3YtOmTSyYKgO8SV3+xMbGvvSxBw8eYOLEiQgNDYWlpSXGjh2Lzp07F7rJEBoaCh8fH0RFRcHGxga//vorjI2N1RVfIzk6OmLLli0IDw/nVkjlyNixY+WOQMUo6T2O1Ovu3bvFHo+Pj4eBgUGJc7OyshATE4P58+dDCIE2bdqoIqLGKe68bNOmTRBCYNasWSyYKkfc3d2xfv163LhxAyNHjoSPj89LO7FmZmZizJgxuH79OoQQcHd3V3NazWJra4vw8HCEhoZi2LBhiuPvvPMONm3ahO+//x4DBw5UdMU/d+4cVqxYASEEz+PKgJ+f30sfO3r0KD744APUrFkTc+fOhbu7O2rXrl1oTEpKCjZu3Ihvv/0WycnJWL16Nfr166fi1AQ8263Ix8cHJ0+eRFRUVLHbvo4dO7bIa0akDtySj4hKVNBC/MiRI+jbt6/MaYiIXk9B8WdJ8vPz8eDBA0RERCAuLg6SJEFHRwdnz55Fp06d1JBS8wwePBiHDh3C6NGj4ePjozheUqv+gwcP4t1330WTJk2KrOomIiJ6U5GRkbC2toahoSEePHggd5wKraArRFlr2rSpSp5X02VnZ6Nr1664cOECFi9ejLlz57509bYkSfj2228xf/58dOzYEUFBQdDT01NzYs0RHh6OLl26oEmTJoiIiEDNmjXljkREVKoXt6V82ZZIyvD29lbqug69XNWqVZGdnV1oGzHg9bZKJPUYOXIktm/fDiEEGjVqhAkTJsDBwUFR2BYfH4+AgAD89ttvuHfvHgBg2LBh2LFjh5yxK71Dhw5h8ODBeOuttxSdjADg8uXLsLa2Rl5eHrS1tdG+fXtkZGTgxo0byMvLgxAChw8fxjvvvCNj+srr+vXr6NixI3R0dHDmzJlSC22vXLmCbt26IS8vD2FhYWjRooWakmomDw8PzJ07FxkZGQCKFvAWnBtUq1YNS5cuxaeffqr2jKTZ2GGKiEpUp04dJCcnK1aUEhFVRAUr5pRRcMJes2ZN/PbbbyyWUqGwsDAIIeDm5qb0nIILQ8nJyaqKRUREGqygG0JOTo7MSSo+FjZVLB4eHoiIiICrqyvmzZtX4lghBObOnYuoqCjs2rULa9aswezZs9WUVPN07NgRHh4emDp1KpycnPDLL7+ga9eucsciKpd69OgBABg9ejS7rMjsZev0X2X9vr6+PqZPn85iqTLQsGFDxMbGIjAwsFDBFJVfGzZsQEpKCk6ePIl79+5h4cKFxY4r+J3q3bt3ocWIpBp9+/bFmDFjkJeXh9jYWDRr1gwAYGlpCS8vL0yePBm5ubkIDw8vNG/RokUsllKhVatWISMjA8uWLVOqK6GFhQW++OILzJ07FytXrsS6devUkFIzzZ49Gz/88IPivcrIyAhWVlaFuhhHRkbiwYMHyMjIwGeffYY7d+7ghx9+kDM2aRh2mCKiEvXo0QP+/v7Yu3cv3n33XbnjEBG9FjMzs1ILprS0tFCjRg00a9YMTk5OGDVqFFvAqliVKlUUFxE6dOigOF7SCseIiAh06tQJVapUwZMnT9ScmIiIKrOcnBx0794dZ8+eRbt27RAZGSl3JCK16dixIyIjI19p5fuxY8fQr18/WFlZFbkpRGWnoFDg/PnzuHLlCoQQaNy4Mdq1awdjY+MiXVyeJ4TA+vXr1RWVSHa6urrIz8/HyZMn0b17d7njaLQXCzfc3d0hhMCSJUvQsGHDl84TQkBfXx+mpqawsrIqdfs+Us7EiRPh7e0NXV1dDBkyBC1atICuri4WLVoEIQQmT56MunXrvvLzLliwQAVpqYAkSfDw8MDKlSsVXaRe1LhxY8yePRtTpkx5rQ5uVLauXbuGTZs2ITo6Grm5uTA3N8fo0aO5IFfFmjdvjjt37uDs2bOwtbVVas65c+fQtWtXmJmZ4datWypOqJkKvi8CQKNGjbBq1SoMHToUOjqF+/nk5eVh7969mD17Nu7evQshBI4ePYo+ffrIEZs0EAumiKhEGzZswEcffYQhQ4Zg7969cschIqJKpG7durh//z4OHjyI/v37K46XVDC1Z88eDB8+HA0bNsQ///yj7shERFSBFHSLKknBlrxhYWH4+eefcfnyZQDAsmXL8NVXX6k6IlG5YWRkhPT0dISFhcHKykqpORcuXEDHjh1Rs2ZNPHz4ULUBNVjBuXEBZbe1kiQJQgjk5eWpNB898+TJE4SHhyMhIQGZmZkYMmQIt0+UQcOGDZGQkPBK72WkHtz6TV7//PMPrK2tcf/+/df6THkZfsaohyRJiIyMxIULF5CSkgIAqF27NqytrdG+fXsWSpHGK9h29FUKpkJCQtClSxfo6+sjMzNTxQk108CBA3HkyBE0aNAAoaGhip0jXiYhIQGdOnVCfHw83nnnHRw+fFhNSUnTcUs+IiqRu7s7/vjjD+zfvx+LFi3CwoULeQJezpw6dQqbNm1CcHAwEhIS8PTpU1y6dKnQxYeAgABcvnwZNWvWxKhRo2RMS0T0nxYtWiA4OBgXL14sVDBVkn379gEAL34TEVGpCrZHeBWSJKFLly6YOXOmChIRlV8FN0xv3Lih9HnWjRs3Cs0l1WjSpAmvw5Rj//zzD+bMmYNdu3YV2s61U6dOha7LrF+/Hr/++isMDQ1x/PhxvqYq0r59eyQkJOD69ev8zljO+Pr6Ani98zN6c40bN0ZERASWLFmCU6dO4d9//0V2djaEEJAkiZ/l5ZwQAlZWVnxfI3oJIyMjJCUlwd/fX+mCKT8/PwCAoaGhCpNptvPnz0MIga+//rrUYikAqF+/Pr7++mtMmzYNoaGhakhI9Aw7TBFRiQICAvDkyRN8+eWXiIqKQosWLeDm5qZU63cAcHR0VFNSzZOZmYmxY8cqOn89vyLoxdVaQUFBcHBwgBACf//9N8zNzWXJTET0vO+++w5z585F/fr1cevWLejr6wN4+crTwMBA9OjRA/n5+Vi7di0mTJggV3QiIqoAtLS0Xmm8iYkJJk6ciHnz5qFq1aoqSkVUPtnZ2SE0NBS2trY4c+ZMqb8/+fn56NatG0JCQtC5c2ecO3dOTUmJyo+QkBAMGDAADx48KFRsUNx3maSkJDRp0gQ5OTk4cuQI+vbtK0fkSm/v3r0YNmwYnJycFAU6RPRy7PxF9Oby8/ORmpqKzMxMNGzYsNR7ZlT2XF1dsXv3bhgZGeHcuXNo0aJFieOvX78OOzs7pKWlwcXFBbt27VJTUs1SvXp1PH36FCEhIUpvSxkWFobOnTujatWqyMjIUHFComfYYYqISuTs7Fxo1dv169exZMkSpeYKIZCbm6uqaBrP1dUVR48ehSRJ6Ny5MxwdHbFy5cpix3br1g2WlpaIjo7Gnj17uL0IEZULU6ZMwapVq5CYmIhhw4Zh8+bNMDExKTIuNzcXGzduxOeff478/Hw0btwY48aNU39gIiKqUDZu3FjqGC0tLdSoUQPNmjWDpaUlL26TxhozZgzOnz+PkJAQDBkyBOvWrUP9+vWLHZuYmIiJEyciJCQEQgiMGTNGzWmJ5Pfw4UO8++67SE1NhampKebPnw8HBwe0bdu22PF169ZFv379cODAARw+fJgFUyri4uKCUaNG4ffff8f48ePh4eGB6tWryx2LiIgqmby8PGzatAmbNm1CaGgocnJyIIQosvPHoUOHEBAQAENDQ8ydO1fGxJXbZ599hr179yItLQ12dnZYsGABxowZU+Q684MHD7B582YsWbIEDx8+hJaWFmbNmiVT6sqvUaNGuHnzJrKyspSeUzC2YcOGqopFVAQLpoioVGxEV/7s2bMHR44cgRAC69atw0cffQQALy2YAp5dNLp8+TL8/f1ZMEWV1t27d1XyvE2aNFHJ82q6mjVrYseOHejfvz+OHj2Kxo0bw8nJSfH4F198gezsbISFhSEtLQ2SJEFfXx87d+6Erq6ujMmJiKgiGDt2rNwRiCqMSZMmYfv27Thz5gwOHz6M5s2bo0+fPrCxsUHdunUhhEBiYiJCQ0Nx/PhxxYXsbt26YdKkSTKnJ1K/n376CUlJSahduzaCg4OV+s7Yq1cv7N+/H+fPn1dDQs20efNm9OzZE5cuXYKPjw/279+PQYMGKd0pnwWgb27z5s2Kn5//93z++Ovga6MaBQsMGjVqJHMSooojKSkJQ4YMQUhISKn3zszMzDB48GAIITBgwAB06NBBPSE1jJ2dHVasWIFZs2YhLS0Ns2bNwueff45mzZoV+i4TGxtbaBvS77//HnZ2djKnr7wGDBiANWvW4OjRo+jWrZtSc44cOaKYS6Qu3JKPiErk7+//RvOfv/FNZWfw4ME4dOgQRo8eDR8fH8XxktooHzx4EO+++y6aNGmC27dvqzkxkXqooisEu+WpXlBQEEaNGoU7d+4AQKHOhsB/hbuNGzfGzp07ld6LnoiIiIiUl5GRgQ8++AAHDhwAUPScrEDBudmgQYOwdetWGBgYqC0j/Sc3NxcPHjwAABgbG0NHh+ti1cnGxgYRERFYtmxZoUVpJV2X8fPzQ48ePVCrVi0kJyerO7JGKPj3LyBJ0kvfy17E7/5lo+A1ePHf88XX5lXwtSGi8iIvLw9du3ZFaGgotLS0MGzYMDg6OmLq1Kkv/fzv0qULzp8/j3nz5mHx4sUyJdcMf/75J6ZNm4a4uDjFsYLPnufLIUxNTeHh4QEXFxe1Z9QkcXFxsLKyQnp6Ok6cOFFq0dTZs2fRq1cv1KhRAxEREewyRWrDb9JEVCIWPJVPYWFhEELAzc1N6TmmpqYAwItyVKmxDrxi6tatG27cuIHt27fjwIEDCAsLQ1JSEvLy8lCrVi1YWVlh8ODBGDt2LPT09OSOS0RERFQpVa9eHfv27cPhw4fh5eUFPz8/ZGZmFhpTtWpVODs7Y/LkyRg4cKBMSTXX1atX4enpiZMnT+LGjRuK7z9CCJibm6N3796YNGlSkRt1VPZu3rwJAHB0dFR6jrGxMQDg0aNHKslEz7x4XYDXCdTvZf/mfC2IqKLz8fFBaGgodHV1ceDAAcUWu1OnTn3pnMGDByMkJARnzpxRV0yNNXToUAwcOBD79+/HyZMnERUVhdTUVADPzsPatm2LXr16YciQIdy9QA0aNGiAI0eOYPjw4ejZsycmTZqEcePGoX379oUK2S5evAgfHx94eXmhQYMG2L17N4ulSK1YMEVEJRo/fjwAoF+/fhg+fLjMaajA/fv3ATw74VCWlpYWACA/P18lmYjKg4JW4lTx6OjoYNSoURg1apTcUYiIiIg02oABAzBgwADk5+cjJiam0E2Gt956SyVdXal0X3/9NVauXIn8/PxiC0KuXbuG69evw8vLC7Nnz8a3334rU1LN8PTpUwB4pZttGRkZAJ4VHpJqxMbGyh1B473sNeBrQ0SVwR9//AEhBCZOnKgoliqNlZUVAODatWuqjEb/o6uri2HDhmHYsGFyR9F4zZs3BwBkZmYiOzsbHh4e8PDwgJ6eHkxMTCCEwP3795GdnQ3g2XeazMzMEl87IQRiYmLUkp80BwumiKhEBdu9vUonI1I9Q0ND3L9/H3FxcUrve11wYaJ27doqTEYkr7Fjx8odgYiIiMqZlJQUbN26FYGBgbh16xbS09ORl5dX4hxehCN6tujG3Nxc7hgEYNq0afD09FQUSrVu3Rq2traoX78+ACAhIQHnz5/HlStXkJeXh//7v/9DRkYG1qxZI2fsSq1u3bq4d+8eYmNjYWNjo9ScyMhIAK+2+I1eTdOmTeWOoPFe9hrwtSGiyuDSpUsAnnWNUlbdunUB/LcInkhT3L59u9CfC77LZGVlIT4+vtg5SUlJJT7n627vS1QSFkwRUYnq1KmD5ORk1KtXT+4o9JwWLVogODgYFy9eRP/+/ZWas2/fPgD/rWggIiIiIqrs/vjjD0yePBnp6ekAlN8KhhfhiKi8CAoKwi+//AIhBCwsLLBu3Tp07dq12LHBwcGYNGkSoqKi8PPPP8PNze2lY+nN2Nra4t69ezh69ChcXV1LHS9JEry9vSGEgIODgxoSEhERUVl7+PAhAKBWrVpKzylYrMMuraRpuLidKgoWTBFRiSwsLODv7487d+4o3cmIVG/AgAE4e/YsPDw8MHPmTOjr65c4PjAwENu3b4cQAoMGDVJTSiIiIiIi+Zw+fRqjRo1SFEk1bdoU7dq1g5GRkWK7apLXqVOnsGnTJgQHByMhIQFPnz7FpUuXYGFhoRgTEBCAy5cvo2bNmty6lzTSr7/+CgBo1qwZgoKCYGho+NKxXbp0QUBAADp27IjY2FisXbuWBVMq8sEHH2D37t3YunUrPv3001Kvmc2aNQsXL16EEII3j4iIiCooExMTJCUl4Z9//lF6YfqNGzcAPGtOQOqRnp6O2NhYpbpLA4Cjo6MaUmmejRs3yh2BSCksmCKiEo0aNQp+fn7w8fHBu+++K3cc+p8pU6Zg1apVSExMxLBhw7B582aYmJgUGZebm4uNGzfi888/R35+Pho3boxx48apPzCRzPLy8hAUFAQAaN++fYk3GYBnq4UKWiw7ODiwywQREVEFtHz5ckiSBCMjI2zduhX9+vWTOxL9T2ZmJsaOHYu9e/cC+K/zV3HnXNra2pg6dSqEELC1teUWcWoQExODAwcO4OLFi0hJScGTJ09K7M4mhMCpU6fUmFCzBAYGQgiBr776qtTvMQBgaGiIL7/8EhMnTkRgYKAaEmqmd999F927d4evry969uyJpUuX4r333lM8npubi7i4OAQFBeGnn37C2bNnIYSAi4sLi9jU5MaNG9i8ebOiKPfJkyc4duwY3n77bcWYy5cv4+7du6hevTqcnJxkTEtERBVBmzZtkJSUhNDQUKW35duxYweEEEpv4Uuvz9vbG56enoiKinql7tK5ubkqTkZE5ZmQlH3HICKNJEkS+vTpg9OnT2P+/PlYuHAhCwfKiVOnTqF///7Izc2Fvr4+nJyc8Ndff0EIgX79+iE7OxthYWFIS0uDJEnQ19eHn58fOnfuLHd0IrXbs2cPhg8fjlq1auHOnTuoVq1aieMzMzPRpEkTPHjwAPv378fAgQPVlJSIiIjKirGxMR49eoTVq1dj2rRpcseh5wwcOBBHjx6FJEno3LkzHB0dsXLlSgghEBUVVajDFAC0a9cO0dHRWLZsGb766iuZUld+mZmZmDJlCrZs2VLkBoMkSUWuBTxf6KbMym16PVWrVkV2djbOnz+Pjh07KjUnPDwcNjY20NfXR2ZmpooTaq6HDx+iZ8+euHDhQqnXyiRJgp2dHU6cOIHq1aurKaFmys/PxxdffIE1a9YgPz+/0HvVi58xR44cwcCBA6Gjo4PY2Fg0bNhQrtiVRo8ePcr8OVmYS0Tlxc8//4zp06fD0NAQt27dgrGxMQBAS0ur2M+Z3bt3w9XVFUIIbNu2DW5ubnJFr9Ty8vLw3nvv4eDBgwCgdLEUwO8yRMQOU0RUisDAQHz++edITk7GkiVLsGPHDri5uaFdu3YwNjYudd9ltrJUnZ49eyq2Gblz546iWAoAjh49CuC/E8PGjRtj586dLJYijfXnn38CAIYPH15qsRQAVKtWDW5ubvDy8sKePXtYMEVERFQB5efnAwC6desmcxJ63p49e3DkyBEIIbBu3Tp89NFHAICVK1e+dI6LiwsuX74Mf39/FkypiCRJGDp0KE6ePAlJklC7dm00atQIkZGREELAwcEBqampuHbtGnJzcyGEQMuWLVG/fn25o1d6+vr6yM7ORkZGhtJzCsZWqVJFVbEIgJGREYKDg7F48WJ4enoiLS2t2HHVqlXD1KlT8c0330BPT0/NKTXPxIkTsWHDBkiShIYNG6JLly7YvXt3sWP79++PZs2a4fbt29i9ezc+/fRTNaetfPz8/CCEKLUz4fNe1mmypA6URERymDBhAlauXIl//vkHffr0gY+PT5HFHgCQlJSENWvWYMWKFRBCwNLSEq6urjIk1gxr167FgQMHAAD16tWDu7s7OnbsCBMTE2hpacmcjp6XlJSEqKgopKamAni2zaWlpSXq1asnczLSZCyYIqISOTs7F/pSev36dSxZskSpuWxlqXrdunXDjRs3sH37dhw4cABhYWFISkpCXl4eatWqBSsrKwwePBhjx47lRTnSaKGhoRBCvNJKxx49esDLywvnzp1TYTIiIiJSlbfeegsXL158pSIDUj0fHx8Az7Z/LyiWKk1BV52rV6+qLJem27VrF06cOAEhBBYuXIj58+fjypUraNeuHQDA398fwLNCHG9vbyxYsACpqanw9vaGvb29nNErvWbNmuHixYs4ePCg0ovSClbXN2/eXJXRCICenh6WLVuGOXPmwN/fv9jrMr169VJqO0V6c6dOncL69eshhMCcOXOwePFiaGtrl3izdPjw4fj+++9x+vRpFkyVAUdHxxILnOLi4nDjxg0Az64dm5mZKW6SJiYm4vbt24quhubm5mjQoIFachMRKaNKlSrYv38/nJ2dER4ejrZt26Jly5aKx0eNGoXHjx/j1q1bkCQJkiShVq1a2LNnD4s/VWjz5s0AAAsLCwQGBio6f1H5IEkSfv31V3h6eiI6OrrYMRYWFvjkk08wceJEFrmR2rFgiohKxZ07yzcdHR2MGjUKo0aNkjsKUbn1zz//AHh2s0FZZmZmheYSERFRxTJixAhERkbi2LFjcHBwkDsO/U9YWBiEEK+0HYWpqSkAIDk5WVWxNN62bdsAAF26dMHChQsBFN/Ro3r16pgxYwa6desGJycnuLi4IDIykje0Vah///6IjIyEh4cH3nnnHfTs2bPE8b6+vvDw8IAQAv3791dTSqpevTr69+/Pf3OZrVu3DsCz35ulS5cqNaegG/vLbuDRq/Hz83vpY0ePHsUHH3yAmjVrYu7cuXB3d0ft2rULjUlJScHGjRvx7bffIjk5GatXr0a/fv1UnJqISHnt27dHaGgoxo4di+DgYPz999+Kxy5evFjoflrnzp2xbds2FrGr2NWrVyGEwPz581ksVc4kJSVh0KBBCAsLA/Dy+81XrlzB1KlTsWHDBhw8eJCdjEmtWDBFRCXy9fWVOwIRUZl5lQLQgrHslEdERFQxffLJJ9i8eTNWr16NIUOGoFOnTnJHIgD3798HgFcqsClYYVqwzSKVvYJCtgkTJig13sbGBpMnT8aPP/6In376CcuXL1dxQs01Y8YM/Pzzz0hPT0e/fv3w8ccfY/z48ejQoUOh343IyEhs2LAB3t7eyMnJgaGhIWbMmCFveCI1Cw4OhhACH374odJzGjVqBABISEhQVSzCs10LXF1doaOjg6CgILRp06bYcbVr18bs2bMxYMAAdOvWDW5ubggLC0OLFi3UnJiI6OXefvttBAUF4cyZMyXu/NG7d2+5o2qU57t9kfyysrLQo0cPXL16FZIkoU6dOnB1dUXnzp0LdZcMDQ3Fzp07kZSUhPDwcPTq1Qvh4eHcXpzUhgVTRFQiJycnuSMQEb2xOnXq4N69e/j777+VvllasDroxdWOREREVDEYGBjgyJEjcHFxgaOjI2bOnAk3Nze0aNEC+vr6csfTWIaGhrh//z7i4uLQoUMHpebExsYC4HmZKqWkpAAovIWbrq6u4ucnT56gatWqheYMGDAAP/74Iw4dOsSCKRWqXbs2du7cicGDByM7OxteXl7w8vKCnp4eTExMIITA/fv3kZ2dDeDZwg89PT3s2rULtWrVkjm9ZklKSkJUVBRSU1MBACYmJrC0tFTcECLVS0pKAvBfx2hlFLzXcbGUaq1atQoZGRlYtmzZS4ulnmdhYYEvvvgCc+fOxcqVKxXdw4iIyhN7e3tuT10OmJubIzIyUnEORuXDjz/+iCtXriiK2VevXo3q1asXGTd69GgsX74cM2fOhLe3N65evYoff/wRX331lQypSRNxE0giokri0aNH+Pfff3H37t1S/yPSNDY2NpAkSbGfuTI2bdoEIQSsra1VmIyIiIhUqUmTJvDx8UGNGjWwfPlyWFlZoXr16tDW1i7xPx0dri9TlYIOERcvXlR6zr59+wAAVlZWqohEgOL/+Ro1aiiOPf9zcZ1XDA0NAXALa3Xo06cPzp07h06dOkGSJEiShKysLMTHxyMuLg5ZWVmK4506dUJISAh69eold2yNIEkS1q5di3bt2sHU1BR9+vTBiBEjMGLECPTp0wcNGjRA27Zt4eXlxS55alBwE+5VtnC9d+8egGcFbqQ6J06cgBACPXr0UHpO9+7dAQAnT55UVSwiIqoERowYAUmScOjQIbmj0HO2b98OIQR69+4Nb2/vYoulClSrVg2//vor+vTpA0mSsH37djUmJU3HK4BERBXYiRMn4OnpiTNnzihdPS+E4Ko50jjDhg3D3r17cerUKaxatQqzZs0qcfyqVatw+vRpCCEwfPhwNaWk9PR0xMbGIj09HXl5eaWOd3R0VEMqIiKqyNasWYPPP/8c+fn5r7Q1L6nOgAEDcPbsWXh4eGDmzJmldvsKDAxUXGgdNGiQmlJqngYNGiAmJqZQkUH9+vVRtWpVPH36FBEREWjWrFmhOTdu3ADArizq0qFDB5w/fx6hoaE4efIkLl++XKSTUa9evWBjYyNzUs2RlJSEQYMGISwsDMDLt4C/cuUKpk6dig0bNuDgwYOoX7++OmNqlObNmyMiIgJXrlxRehuko0ePAoBSXY/o9cXHx7/yHCEEAG6XSEREJZs+fTq2bdsGLy8vDB06FA4ODnJHIgA3b94EAHzyySdKz/nkk09w/PhxxMTEqCoWUREsmCIipaWlpWH37t0IDg5GQkICMjMzsXHjRjRt2lQxJi4uDg8fPoS+vn6hVv5U9qZPn45ffvkFwMsvyhHRM25ubvi///s/XLx4EV988QWCg4MxY8YM2NnZKVbT5+bmIjg4GKtXr8a+ffsghIClpSVGjRolc/rKz9vbG56enoiKilL6/YzFn0REVJojR45g5syZAAAtLS04ODigffv2MDIygpYWG27LZcqUKVi1ahUSExMxbNgwbN68udiuHrm5udi4caOi4K1x48YYN26c+gNriPbt2yMmJgZRUVGKIgMhBGxtbeHv7w9PT0+89957ivE5OTn44YcfADzbAoPe3IEDBwAAPXv2LHH1tY2NDYuiyoGsrCz06NEDV69ehSRJqFOnDlxdXdG5c2fFFnyJiYkIDQ3Fzp07kZSUhPDwcPTq1Qvh4eGoUqWKzH+DyqlPnz4IDw/HL7/8gmnTppX6eX/lyhVFd+n+/furKaVmMjIyQlJSEvz9/WFra6vUHD8/PwD/dTQkIipvuPizfKhSpQqOHTsGFxcX9O7dG9OnT8fIkSPRqlWrUhfokOpUqVIFT548QePGjZWeUzBWT09PVbGIihAS77ITkRJ+/vlnzJ07F48fPwbwrEBHCIGoqChYWFgoxm3btg2jRo2Cvr4+7t27x3bWKlLw7wwA+vr6GDJkCDp27AgTExOlbv6MHTtW1RGJyp3bt2+jW7duiI+PV6xS1NXVVbxPpaamIicnB8Cz97gGDRrgzJkzMDMzkytypZeXl4f33nsPBw8eBPBqxZ9CCKUuRBARkebq3r07/P390bBhQxw5cgRt27aVOxL9z6lTp9C/f3/k5uZCX18fTk5O+OuvvyCEQL9+/ZCdnY2wsDCkpaVBkiTo6+vDz88PnTt3ljt6peXl5YUpU6agV69eOH78uOL477//jjFjxkAIAQcHBwwfPhwZGRn4448/cPHiRQghsGTJEsyZM0fG9JWDlpYWtLS0cOnSpULXWcaPHw8hBJYuXQpTU1MZE9Lzli9fjjlz5kAIgfHjx2P16tUvLXTLzMzEzJkz4e3tDSEEli1bhq+++krNiTVDYmIi3n77bWRmZuLDDz+Ep6cndHR0oKWlVeQ65okTJ+Du7o64uDjUqlULsbGxMDAwkPlvUHm5urpi9+7dMDIywrlz5xRb9L7M9evXYWdnh7S0NLi4uGDXrl1qSkpEVDou/ixftLW1FT8X3LtUFl8X1enWrRvOnTuHP//8E4MHD1ZqzoEDBzBkyBB06dIFQUFBKk5I9AwLpoioVAsXLsTSpUshSRKqVKmCtm3bIiwsrNiCqfz8fDRq1AiJiYlYu3YtJkyYIGPyysvJyQmBgYFo3LgxTp8+jbfeekvuSEQVQlJSEiZNmoT9+/e/9MusEAJDhw6Fp6cn6tatq+aEmqVg1S8A1KtXD+7u7q9U/Onk5KTqiEREVIHVqlULDx8+xG+//QZ3d3e549ALgoKCMGrUKNy5cwcAilzULjhXa9y4MXbu3Kl0Nwp6PQkJCWjYsCG0tLRw7dq1Qh2j+/fvryhoe54kSbCyskJQUBBXbpeB4go6SjpO8urQoYOiI9tff/2l1Jx33nkHx48fR7t27RAZGanagBps69atGDNmDACgUaNGGDBgANauXQshBD766CNIkoSgoCD8/fffkCQJWlpa2L9/PwYMGCBz8srt3LlzsLe3hyRJMDQ0xIIFCzBmzJgii20fPHiAzZs3Y8mSJUhNTYWWlhbOnDkDOzs7mZITEf2Hiz/LpzfpIM3XRXW8vb0xceJEvPPOOzhy5IhSc/r3749jx47B09MTEydOVHFComdYMEVEJQoPD1es4v3ggw/g4eEBQ0PDEi/Yffrpp/Dw8MCwYcOwc+dOOWJXesbGxnj06BG8vb0xfvx4ueMQVTjXr1/H4cOHceHCBaSkpAAAateuDWtrawwYMIDbiqiJra0tQkNDYWFhgcDAQBgbG8sdiYiIKhEjIyOkp6cjLCwMVlZWcsehYuTm5mL79u04cOAAwsLCkJSUhLy8PNSqVQtWVlYYPHgwxo4dy3b8apKfnw9Jkgqt0AaebT22dOlSrF+/HgkJCQCe/X598MEHWLZsGWrWrClH3EqnatWqyM7ORnBwcKFuaiyYKp8MDAzw5MmT11oxX716daSnp6s4oWbbuXMnJk6ciLS0tGK7TBTcEjEwMICPjw+GDh2q7oga6ccff8SsWbMUr4kQAs2aNUPdunUhhEBiYiJiY2MhSZLiNVq5ciU+++wzOWMTESlw8Wf5tHjx4jeav3DhwjJKQs+TJAn9+/fH8ePHMXHiRPzwww8vXWiTlZWFWbNmwdPTE3379sWRI0deqVMY0ZtgwRQRlcjd3R0+Pj7o2rUrzpw5ozhe0gW77du3Y+TIkWjZsiWuXr2q7sgaoeDCHG/+EFFFVrNmTWRkZGDbtm1wc3OTOw4REVUyNjY2iIiIwIkTJ9CjRw+54xBVCqmpqcjNzUWdOnV4AbuMvf3224iNjcX333+PWbNmKY6zYKp8Kuhi+CrXZS5cuICOHTvC2NgY9+/fV3FCun//Pjw9PXHw4EFERkYW2m6nTZs2GDx4MD799FN2llazP//8E9OmTUNcXJziWMHnyfO3qkxNTeHh4QEXFxe1ZyQiehku/iRSXkBAALKysjBv3jyEhYWhXr16cHV1hY2NTaFi6dDQUOzatQsJCQno1KkTli1bVuKiKUdHRzX+LUgT6MgdgIjKt4CAAAghMHXqVKXnmJmZAQD+/fdfFaUiMzMzXL16FY8fP5Y7ChHRG2vZsqXcEYiIqBJ6//33ER4ejn379rFgiqiMvLh1EpWdnj17wtvbG3PmzMH58+fRokUL6OrqKh5/3S3DFyxYUJYx6X9atWqFc+fO4Z9//lG6YOqff/5RzCXVq1WrFubPn4/58+cjPz8fqampyMvLg4mJSaHfLVKvoUOHYuDAgdi/fz9OnjyJqKgopKamAnjWUb9t27bo1asXhgwZwteJiMqdq1evQgiB+fPns1iKqBTOzs6FFtkkJibCw8OjxDlhYWHo27fvSx8XQhQqgicqCyyYIqISxcfHA3i1m9kFLRWzsrJUkokAFxcXLFu2DKdOnYKDg4PccYiIXou5uTkiIyMVF0eJiIjK0rRp07Bz5078+uuv6N27NwYNGiR3JCKil5o3bx727t2L+/fvY/fu3YUekyQJXl5er/W8LJhSjXHjxiE4OBhr165Veku+tWvXQgiBMWPGqDgdvUhLSwu1a9eWOwb9j66uLoYNG4Zhw4bJHYWI6LVw8SeRcrjRGVUELJgiohLp6ekhKysLDx8+VHpOYmIiAMDIyEg1oQizZs3Cli1bsHr1aowYMYKrE4lew+3bt5GSkoInT56UeuLONq+qMWLECFy4cAGHDh1i5w8iIipz8fHx8Pb2xscff4yhQ4fCzc0Nbm5uaNGiBapVq1bq/CZNmqghJQHAo0ePkJ6ejry8vFLH8nWhyqpx48aIiIjAkiVLcOrUKfz777/Izs6GEAKSJPFmQznz0UcfYe/evTh27Bg++eQT/PDDD4oFhC/KysrCrFmz8Ndff6Fv3774+OOP1ZyWiIiIygIXfxIpz9fXV+4IREoREr9tE1EJ2rVrh+joaHh5eRW6oKOlpQUhBKKiomBhYVFozpdffokVK1bA3t4eAQEB6o6sMa5fv45BgwYhOTkZS5cuxfvvv882sESluHbtGr799lscOHAAjx49UmoO27yqTlZWFuzs7PD333/j+PHj7JhHRERlquA7C/BsVePzreBLw89/1Ttx4gQ8PT1x5swZpW848HUhTVTS9RdSvZKua2VlZWHevHkICwtDvXr14OrqChsbG9StWxdCCCQmJiI0NBS7du1CQkICOnXqhGXLlkFPT4+LcoiIiCqgFStW4Msvv8SMGTPwww8/yB2HiiFJEiIjI3Hx4kWlF0uzIyuRZmPBFBGVaObMmVizZg06dOiAiIgIxfGXXbD7999/YWlpiUePHmHx4sWYN2+eHLErjebNm5f4eGZmJpKSkiCEgBACtWvXLnW1vBACMTExZRmTqELYt28fPvjgAzx9+vSVVmcLIZTqdkCvJykpCS4uLggLC8P06dMxcuRItGrV6qWrs4mIiJSlpaX12nP5+a9a06dPxy+//ALg1Vr083UhTcSCKXk9X3xbVlj8+eYKOhQLIXDq1Kkix1/Hi89Fr+fu3bsqeV52mCSi8oCLP8s3Hx8fLF68GHfu3HmlefyOSaTZWDBFRCWKiYmBhYUFcnNzsWjRIsyfPx9A8Rfsrl27hmHDhiE6OhrVq1fHrVu3UKdOHTnjV3hvcpPnZXiTgTTRP//8g9atWyMzMxMNGzbE7NmzUa1aNXz88ccQQuDkyZNITU1FWFgYtmzZgri4ONjb22PRokXQ1taGk5OT3H+FSklbW1vxMzt/EBFRWfPx8Xmj+WPHji2jJPS8bdu2YdSoUQAAfX19DBkyBB07doSJiYlS33/4upCmKXgvGzp0KGrWrClzGs3D6zLlU8Hr8uK/ZcH1ylctxi34PsrX5c09/z2/rPD7PxGVJ1z8WT7NnTsXy5cvV+oc4MVzhfz8fFVGI6JyjgVTRFSqlStX4osvvoAQAjY2NnBxccFXX30FIQQWLFgAXV1dBAUF4fjx44oTi3Xr1uHDDz+UOXnF5+7urpLn3bhxo0qel6i8mj17NlatWoUaNWrg6tWraNCgAaKjo9G2bdsiF0WfPHmCDz/8EDt27MCIESOwdetWGZNXbuz8QUREpHmcnJwQGBiIxo0b4/Tp03jrrbfkjkRE9FL+/v4qeV4uynkzzs7OigU3vr6+xR5/Hc8/F70eFhkSUWWgTPEnF3+WHyEhIejSpQuEEOjVqxdWrFiB/Px8WFtbK/7dCxZLe3l54cCBA7C3t8euXbtQr149ueMTkcxYMEVESlmxYgXmzZuHnJycl54ESpIEbW1trFy5Ep9++qmaExIRvZyVlRUuXbqEL774At999x0AvLRgCni2qqRz5864cOECdu7ciffee0+O2JXe4sWL32j+woULyygJERERqYuxsTEePXoEb29vjB8/Xu44REREVIZK6/Dp6emJ0NBQ6Orqok+fPujcubPiZnViYiJCQ0Nx/Phx5OTkoFOnTvjkk08AsMMkEakXiz8rlnHjxmHz5s0wMzPD9evXoaOjU+K1fy8vL0yZMgXt27dHSEgI9PT0ZEpeuXGrZKoodOQOQEQVw+zZszFw4ECsXLkShw4dQnJycqHHDQ0N0b9/f3z99dewtLSUKSURUfFu374NAOjatavi2PPFn7m5udDR+e+0SEtLC9OnT8e4ceOwYcMGFkypCAueiIiINE9OTg6AZwXtREREVLmUVNj04YcfIiwsDH369MH69evRsGHDYsf9+++/mDBhAo4dO4bAwED89ttvqopLRFQsXrOsWM6ePQshBKZPn17oGv/LTJ48GadPn8bevXvh6emJGTNmqD6kBvLz8yt1q+QXG3QUjH2TjqFEr4oFU0SktNatW2P9+vUAgLt37yIpKQl5eXmoVasWmjdvrpKqeypeQEAAAMDGxgZVq1ZVas7Tp09x/vx5AICjo6PKshGVRxkZGQCAxo0bK45Vq1ZN8XNaWhpq1apVaE6bNm0AABcvXlRDQiIiIiLNYGZmhqtXr+Lx48dyRyEiIiI12b17NzZu3AgbGxscPny4xO2uGjZsiIMHD6JLly7YuHEj+vTpA1dXVzWmJSJNx4KpiiU+Ph7Af9fzgcJdwnJycqCrq1tozujRo7Fnzx7s2LGDBVMq4ujoWGrhU0ZGBm7evImHDx9CCIEWLVrA1NRUTQmJnmHBFBG9liZNmqBJkyZyx9BYzs7O0NLSwqVLl2BhYaHUnH///Vcxj3tlk6YxNDREamoqnj59qjj2fIFUTExMkYKptLQ0AEBKSop6QhIREZFK5Obm4vDhwwgMDMStW7eQnp5e6lYIbP+uOi4uLli2bBlOnToFBwcHueMQEZEGiomJQUpKCszMzBTbwZFq/frrrxBC4LPPPiuxWKqAtrY2Zs2ahffffx/r1q1jwRQREb1UQRfjunXrKo4ZGBgofk5OTkaDBg0KzWnUqBEA4ObNm2pIqJn8/PyUHnvkyBFMnz4dqampWL9+Pbp166a6YEQvYMEUEVEFVVIbS1XMI6rIWrZsieDgYNy6dQt2dnYAgBo1aqBp06a4e/cujh8/js6dOxeac+LECQCAkZGRuuMSERFRGfH398e4ceNw9+5dxbHS2sFLksT27yo0a9YsbNmyBatXr8aIESPQqlUruSMREb22lJQUbN269ZWLcmNiYtSUULMkJSVh9+7dAIAPPvgAhoaGhR6/efMm3NzcEBkZCeDZa/Huu+/it99+g7GxsbrjapRLly4BAFq0aKH0nIKxUVFRKslERESVQ506dRAXF4dHjx4pjtWrVw/a2trIz8/H1atXixRMFXSlSk9PV2tWKl7//v1hbW0Na2trDB06FBcuXHjp1r1EZY0FU0REGiI/Px8AlFrFRVTZdOnSBcHBwTh37hxGjhypOD5w4ED88ssvWLFiBbp164bu3bsDAHbu3Ik1a9ZACMHVDGoiSRIiIyNx8eJFpKSk4MmTJ6UWeC5YsEBN6YiIqCKKjIzEO++8g+zsbEiSBH19fZibm8PIyIjbicvI0NAQx44dw6BBg9C1a1csXboU77//Pm9UlxNXr17FunXrChV/FHyXfBkhBLsYk0b6448/MHnyZMWNNmUXqLEoV3X27t2LqVOnwtzcHJ988kmhx7KystCvXz/cunVL8VpJkoR9+/YhOTkZAQEBckTWGAW/J0lJSUrPKRjLm9lERFSSNm3aIC4uDn///beii7Genh7atGmDqKgo7NixAz179iw0Z8uWLQBQpJCK5FO/fn3MnDkTX375Jb7//nusWbNG7kikIVgwRUQAgPHjxwN4dtFm/fr1RY6/jhefi+R1584dACiyuo5IE/Tv3x+rVq3C3r178eOPPyoKB2fPno2NGzfi8ePH6NWrF0xMTPD06VNkZmZCkiRoa2tj9uzZMqev/Hx8fLB48WLF+5SyWDBFREQlWbRoEbKyslClShX88MMPcHd3h76+vtyxNEbz5s1LfDwzMxMPHz7EtGnTMH36dNSuXRvVqlUrcQ67sqjWDz/8gK+//hq5ubnsTExUitOnT2PUqFGK35WmTZuiXbt2LMqV2fHjxyGEwNChQ4s8tmnTJsTExEAIgcGDB6Nnz544efIkDh48iKCgIOzYsQNubm4ypNYMTZs2xfXr17F582b07dtXqTmbN28GADRp0kSV0YiIqIJzcHDA8ePH4evriwkTJiiOu7m54dKlS9iwYQNMTU3h6uqKjIwMbNq0CTt37oQQAv369ZMxOb3I3t4eAHD48GEWTJHaCIlXQIgIgJaWlmKF2/Otw58//ioKtrEorQ05Kef5LUQAwMzMDEIIHD9+HObm5iXOzcrKQkxMDObPn4+IiAg4ODi80t7BRJWBJEn45ptvkJubiwkTJhS62Hb06FF88MEHePjwYaE5VapUgZeXF8aNG6fesBpm7ty5WL58uVI35Qq2SSpQWrcDIiLSbLVr18aDBw+wePFizJs3T+44GkcVBQP8jqk6f/31F/r37w/g2b+zra0tOnbsCBMTE6Vey4ULF6o6IlG50qdPH5w8eRJGRkbYunUrb7aVE23atMHff/+NPXv2YMiQIYUec3JyQmBgIHr27IkTJ04ojhe8lu+++y7+/PNPNSfWHF999RW+//57CCHw3Xff4Ysvvihx/MqVK/HFF19ACIEvvvgC3333nZqSEhFRRRMdHY22bdvCwMAA9+7dQ82aNQE8W6RjaWmJ27dvF7nPKUkSTExMEBkZiUaNGskRm4oRHh4OGxsb6OvrIzMzU+44pCFYMEVEAP4rwAGA2NjYYo+/juefi17fi9voFbx1v85r4+3t/Uadw4gqo/v372P37t2Ijo5Gbm4uzM3N4erqyn2yVSwkJARdunSBEAK9evXCihUrkJ+fD2tra8XWLqmpqQgLC4OXlxcOHDgAe3t77Nq1C/Xq1ZM7PhERlXMGBgZ48uQJQkJC0KlTJ7njaBx3d3eVPO/GjRtV8rya7p133sHx48dhbGyMAwcOcFtqolIYGxvj0aNHWL16NaZNmyZ3HPqfunXr4v79+0U++588eQIjIyPk5uZi+/btGD58uOKx7du3Y+TIkWjcuPErdz0m5T18+BBt2rRBQkICAKBdu3YYO3YsbGxsULduXQghkJiYiNDQUGzZsgWRkZGQJAmmpqaIjo6GkZGRvH8BIiIq1/z9/ZGbmwsrKyuYmJgojt+5cwejRo1CUFBQofGWlpbYsmUL2rdvr+6oVII1a9Zg5syZMDExQUpKitxxSEOwYIqIqAIoi9XZ+vr6mD59OpYvX14GiYiI3ty4ceOwefNmmJmZ4fr169DR0VGsCCqug4SXlxemTJmC9u3bIyQkBHp6ejIlJyKiisDS0hJXr17FmTNn0KVLF7njEJVrBR3ZfvjhB3z66adyxyEq9wwNDfH48WOEhobC2tpa7jj0P3p6esjLyyvyuvj6+qJnz57Q0tJCcnIyjI2NFY8VLOSpUqUKnjx5IkdsjXH16lX07dsX9+7dK3URqCRJaNSoEf766y9YWFioKSEREVVW165dK7RY2srKSu5I9ILg4GAMHDgQDx8+RN++fXHkyBG5I5GG0JE7ABERle7FVdTu7u4QQmDJkiUldsARQkBfXx+mpqawsrKCgYGBqqMSlUsFXdX69etXaCUpyevs2bMQQmD69OnQ0Sn9tHTy5Mk4ffo09u7dC09PT8yYMUP1IYmIqMIaMmQIrl69ioCAABZMEZWiYLsDe3t7mZMQVQxvvfUWLl68iIyMDLmj0HMMDAyQlpam6GJUwM/PDwBgYWFRqFgKAHR1dQFAqe+k9GZat26N6OhofPPNN9iwYQMePHhQ7DhjY2O4u7tjwYIFim2ViIiI3kTLli3RsmVLuWNolG+++abUMfn5+Xjw4AHCwsIQEhKC/Px8CCEwc+ZMNSQkeoYdpoiIKiAtLS0IIRAVFcVVVkRKKNjW8siRI+jbt6/MaahAjRo1kJmZib/++gu9e/cG8GzFaZs2bSCEwNOnTxUXrwscOHAAQ4YMga2tLYKDg+WITUREFURycjKsrKyQlZWF0NBQmJmZyR2JAAQEBAAAbGxsULVqVaXmPH36FOfPnwcAODo6qiybJjM3N8etW7fYkY1ISd9//z2++uorzJkzB0uXLpU7Dv1P165dERISgilTpuCnn35SHC/oOvnJJ5/Aw8Oj0JwjR45g4MCBaN68OW7evKnuyBorJycH4eHhiIqKQmpqKoBnhVJt27ZFx44d2VGaiIiogiu4j6ksSZKgo6OD77//ngulSa24bIKIykRWVhYePnyIOnXqlMn2cVQyX19fAECzZs1kTkJUMdSpUwfJycmoV6+e3FHoOTk5OQCAunXrKo493wkvOTkZDRo0KDSnUaNGAMAL2UREVKo6deooboLa2tpi6dKlcHV1haGhodzRNJqzszO0tLRw6dIlpRd//Pvvv4p5ubm5Kk6omQYNGoQ1a9YgKCiIBVNESvjkk0+wefNmrF69GkOGDEGnTp3kjkQABgwYgHPnzmHdunVo3bo1HBwcsGnTJly5cgVCCLi4uBSZExERAQAldnCnsqerqws7OzvY2dnJHYWIiIhUpLS+PUII1KhRA82aNYOTkxM+/vhjNokgtWOHKSIq0ePHjxUrgB0dHYts6ZaSkoKJEyfi0KFDyM3NhYGBAT766CN8++23qFKlihyRiYiK6NGjB/z9/bF37168++67cseh/2ncuDHi4uLg5+cHBwcHAEB2djaqV6+O/Px8HD9+HD179iw05/Dhwxg0aBD09PTw9OlTOWITEVEFc/v2bdja2iIlJQVCCNSuXRvVqlUrcY4QAjExMWpKqFlep1tuTEwMzM3NIYRAXl6eihNqpri4OLRv3x46Ojq4cOEC6tevL3ckonLv7t27cHFxwZUrVzBz5ky4ubmhRYsW0NfXlzuaxkpLS4OFhQXi4+MLdTSQJAldu3bFmTNnisyxtbVFWFgYZs6ciZUrV6ozLhERERERyYxtYIioRHv27MHAgQMxadKkIjcV8vPz0a9fP+zbtw85OTmQJAnp6elYvXo1Ro4cKVNiIqKiRo0aBUmS4OPjI3cUek6bNm0AAH///bfimJ6enuL4jh07iszZsmULABTpPEVERFScPXv2oEOHDkhJSYEkScjPz0dSUhJu375d6n9UfuTn5wP4b5tlKnsNGjTA/v37kZeXh65du+LIkSNyRyIq95o0aQIfHx/UqFEDy5cvh5WVFapXrw5tbe0S/9PR4aYPqmJoaIiTJ0/C2toakiQp/nNwcMDOnTuLjL948SJCQ0MBQLFNPBERERERaQ5+OyOiEh07dgwAMHTo0CJb7e3YsQPh4eEQQsDa2hpOTk7w9/dHREQE9u3bh7/++gvvvPOOHLGJiApxd3fHH3/8gf3792PRokVYuHDhK+2fTarh4OCA48ePw9fXFxMmTFAcd3Nzw6VLl7BhwwaYmprC1dUVGRkZ2LRpE3bu3AkhBPr16ydjciIiqgiCg4MxYsQIRUeipk2bol27djAyMuI24hXMnTt3AIDbKapQjx49AAAmJia4fv06Bg0aBCMjI5ibmyvVke3UqVPqiElUrqxZswaff/458vPzS91uhNSndevWCAsLQ2xsLBISEmBqagozM7OXjt+4cSOA/94HSfUkSUJkZCQuXryIlJQUPHnypNTfoQULFqgpHRERERFpEm7JR0QlateuHaKjo7Ft2za4ubkVeqxfv344duwYOnXqhLNnz0JHRwc5OTlwcHBAaGgoXF1d8ccff8iUnIjoPwEBAXjy5Am+/PJLREVFoUWLFnBzc0O7du1gbGxcarcCR0dHNSXVLNHR0Wjbti0MDAxw79491KxZEwCQmZkJS0tL3L59u0hhmyRJMDExQWRkJBo1aiRHbCIiqiAGDBiAo0ePwtDQEFu3bkX//v3ljqSR7t69W+jPZmZmEELg+PHjMDc3L3FuVlYWYmJiMH/+fERERMDBwQF+fn4qTKu5CrZKBKB04YcQApIkcatE0khHjhzBwIEDATz7/bG3t0f79u2VLspduHChqiMSlUs+Pj5YvHixohhaWfycISIiqpxiYmKQkpICMzMz1KtXT+44pIHYYYqISpSUlAQAaNasWaHjOTk5CAgIgBACU6ZMUbQT19XVxaRJk3D+/HmcP39e7XmJiIrj7OxcqPDm+vXrWLJkiVJzhRDIzc1VVTSN1qZNG/j6+iI3N7fQv3G1atXg6+uLUaNGISgoqNAcS0tLbNmyhcVSRERUqrCwMAghsHjxYhZLyejF75LAs4KcPn36vPJzjRkzpiwiUTEcHR3ZgZXoFaxYsQIA0LBhQxw5cgRt27aVORFR+Td37lwsX75cqcLcgqJcIiIiqpiSkpKwe/duAMAHH3xQpGP0zZs34ebmhsjISADPPvvfffdd/PbbbzA2NlZ3XNJg7DBFRCXS09NDXl4ewsPD0aFDB8Xxs2fPwt7eHkIIxMXFFar6LXisatWqyMjIkCE1EVFhb7LtDlfMy+vatWuIjo5Gbm4uzM3NYWVlJXckIiKqIGrUqIHMzEyEhobC2tpa7jgaqyy2P9TX18f06dOxfPnyMkhERPTmatWqhYcPH+K3336Du7u73HGIyr2QkBB06dIFQgj06tULK1asQH5+PqytrRUL1VJTUxEWFgYvLy8cOHAA9vb22LVrF7tNEBERVUBr167FJ598AnNzc1y7dq3QY1lZWbC0tMStW7cKFUgLIdCtWzcEBASoOy5pMHaYIqISVatWDenp6YpOUwUKPqzefvvtIl9aq1atqrZ8RETK8PX1lTsCvaaWLVuiZcuWcscgIqIKqFmzZoiOjkZmZqbcUTTaxo0bC/3Z3d0dQggsWbIEDRs2fOk8IQT09fVhamoKKysrGBgYqDoqEZHSChbVPL+4kIhezsvLCwDQtGlTHD58GDo6OoiOjlY8LoRArVq10LdvX/Tt2xdeXl6YMmUK3nnnHYSEhEBPT0+u6ERERPQajh8/DiEEhg4dWuSxTZs2ISYmBkIIDB48GD179sTJkydx8OBBBAUFYceOHXBzc5MhNWkiFkwRUYneeustREZGws/Pr9CWCX/++SeEEHB0dCwyJzk5GQBQt25dteUkIiqJk5OT3BGIiIhIzVxcXHD58mUcO3YM9vb2csfRWGPHji3054JOLEOGDIGFhYUckYiI3pi5uTkiIiLw4MEDuaMQVQhnz56FEALTp0+Hjk7pt6UmT56M06dPY+/evfD09MSMGTNUH5KIiIjKTEFXKTs7uyKPbdu2DQDQo0cP7Nu3DwAwbdo09OnTBydPnsT27dtZMEVq8+Z90YmoUuvduzckSYKnpyeOHj2Kx48fw8PDA6GhoQCAQYMGFZlz6dIlAECDBg3UmpWI6GXGjx+P8ePHY9euXXJHoRLExMTg999/x8qVK/HNN98gJSVF7khERFSBzZo1C+bm5li9ejXCwsLkjkP/4+vri9OnT6NZs2ZyRyEiem3vv/8+JElS3OAhopLFx8cDANq0aaM49vy2vTk5OUXmjB49GpIkYceOHaoPSERERGWqoLlGo0aNCh1/8uQJzp07ByEEPv7440KPjR8/HgAQERGhnpBEYIcpIirFp59+irVr1yI9PR0DBw4s9Fjr1q2LLZg6fPgwhBCwsrJSV0wiohL5+PgAAFcllFMRERGYMWMGgoKCCh0fNmwYateurfjzL7/8gsWLF8PQ0BBXrlyBrq6uuqMSEVEFUqNGDZw6dQrDhw+Ho6MjZs6cCTc3N7Ro0QL6+vpyx9NY7Pwpr7t37yp+btKkSbHHX8fzz0WkCaZNm4adO3fi119/Re/evYu9PkZE/ykoiHp+R4Lnt9tNTk4usvi24AbrzZs31ZCQiIiIytLDhw8BFC6QBoBz584hJycHWlpa6NWrV6HHChZWJSUlqSUjEcCCKSIqhampKQ4ePIgRI0YoVgIBQPPmzbF7924IIQqNj4mJQWBgIAAU+aAjIpJLnTp1kJycjHr16skdhV5w6NAhDB8+HNnZ2ZAkSXH8xc8XABgzZgy++uor3L9/H4cOHSp2/3MiIqIC2traip8lScLy5cuxfPlypeYKIZCbm6uqaESyKbgA/eL/42/S8Yu/L6SJ4uPj4e3tjY8//hhDhw6Fm5uboii3WrVqpc5nkSFpmjp16iAuLg6PHj1SHKtXrx60tbWRn5+Pq1evFimYKrgWnZ6ertasRERE9OYMDAyQlpaGhISEQsf9/PwAABYWFjA2Ni70WMECaWW27yUqK/y/jYhK5eDggNjYWAQFBSEhIQGmpqawt7cv9gMrPj4e8+fPBwD06dNH3VGJiIplYWEBf39/3LlzBx06dJA7Dv1PfHw83n//fWRlZaFNmzZYuXIl7O3tUaNGjWLH16hRA4MHD8b27dtx9OhRFkwREVGJni/ELe7PRJroZb8H/P0gejVmZmaKRR6SJGH79u3Yvn27UnNZZEiaqE2bNoiLi8Pff/8NBwcHAICenh7atGmDqKgo7NixAz179iw0Z8uWLQBQpJCKiIiIyr9WrVohJCQEf/31F/r37684vmfPHgghiu0+XVBcxYXvpE4smCIipejp6aF79+6ljrO3t4e9vb0aEhERKW/UqFHw8/ODj48P3n33Xbnj0P/8+OOPyMjIQNOmTREYGAgjI6NS5zg7O+OPP/5AeHi46gMSEVGFtnDhQrkjEJU7GzdufKXjRPRyzxcasuiQqGQODg44fvw4fH19MWHCBMVxNzc3XLp0CRs2bICpqSlcXV2RkZGBTZs2YefOnRBCoF+/fjImJyIiotcxYMAAnDt3DuvWrUPr1q3h4OCATZs24cqVKxBCwMXFpciciIgIAEDDhg3VHZc0mJD4bY6IiIgqOUmS0KdPH5w+fRrz58/HwoULi93yjdSrXbt2iI6Oxpo1azB16lTFcS0tLQghEBUVBQsLi0JzAgMD4eTkBCMjI6Smpqo7MhEREREREXx8fN5o/tixY8soCVHFEB0djbZt28LAwAD37t1DzZo1AQCZmZmwtLTE7du3i1ynkSQJJiYmiIyMRKNGjeSITURERK8pLS0NFhYWiI+PL/QZL0kSunbtijNnzhSZY2tri7CwMMycORMrV65UZ1zSYOwwRURERJVeYGAgPv/8cyQnJ2PJkiXYsWMH3Nzc0K5dOxgbG0NbW7vE+Y6OjmpKqlnu3LkDAOjcubPScwouqj5+/FglmYiIiIiIiErDgqfyqWHDhnB2doajoyOcnZ3RsmVLuSPR/7Rp0wa+vr7Izc0ttCVltWrV4Ovri1GjRiEoKKjQHEtLS2zZsoXFUkRERBWQoaEhTp48idGjRys6RwHPuk7+8ccfRcZfvHgRoaGhEEKgd+/e6oxKGo4dpoiIiKjSK+hY9DqEEIUu5lHZqV69Op4+fYqgoCDY2dkpjpfUYSogIADOzs7sMEVERERERESFvPjdv27dunBycoKTkxOcnZ3RunVrGdNRaa5du4bo6Gjk5ubC3NwcVlZWckciIiKiMhAbG4uEhASYmprCzMys2DEXL15EZGQkAGDkyJHQ1dVVX0DSaOwwRURERBqBNeLlT/369XH79m3cunWrUMFUSc6fPw8AaNKkiSqjERFRJZSTk4OIiAhcvnxZUXRrYmICS0tLWFtb82IcERFRBffxxx8jICAAf//9NwAgMTERu3btwq5duwAAderUgaOjo6KAqk2bNnLGpRe0bNmSXcGIiIgqoWbNmqFZs2Yljmnfvj3at2+vpkRE/2HBFBEREVV6vr6+ckegYjg4OCA2Nha7du3CyJEjSx2fnZ2NX3/9FUIIODs7qz4gERFVCpmZmViyZAm8vb3x4MGDYscYGxvj448/xrx581CtWjU1JyQiooosPz8fvr6+CA4ORkJCAjIzM7Fs2TKYmpoqxmRnZyM3Nxfa2tqoUqWKjGkrt7Vr1wIAkpKS4O/vDz8/P/j7++PKlSuK43v27MGePXsAALVq1SpUQNW2bVvZshMRERERkfpxSz4iIiIikoWfnx969OgBIQT++usvxd7kxW3Jl52djTFjxmDnzp3Q0tLCxYsXuRqYiIhKdffuXfTq1QsxMTGldpsUQuDtt9/GqVOn0KhRIzUlJCKiiuzQoUOYPn067ty5U+j4i9uLe3p6Ytq0aTAwMEBcXByqV6+u7qgaLSUlBf7+/ooiqujoaMV5QcEWfkII5ObmyhmTiIiIiIjUjAVTRERERCSb999/Hzt27ICenh4+/fRTvPfee7Czs4MQAgcPHoSRkRGCgoKwbt063Lp1CwAwefJk/PzzzzInJyKi8i4nJwcdOnTA1atXAQCtWrWCu7s7bG1tUb9+fQBAQkICzp8/j02bNim6T7Rp0wYXLlyAjg6bchMR0ct5e3tj0qRJisKb2rVrIyUlpcjiD+DZApD69esjLS0NPj4+GDVqlFyxCc8KqDw8PPDTTz/h0aNHkCQJQgjk5eXJHY2IiIiIiNSIBVNEREREJJusrCy89957OHLkiGJlb3EKTlldXFywY8cOaGtrqysiERFVUF5eXpgyZQqEEJgzZw4WLVr00s+P/Px8LFq0CEuXLoUQAr/88gsmTZqk5sRERFRR3LhxA23atEFeXh66d++On3/+Ga1atSq2W26BCRMmYP369Rg1ahQ2b94sU3LNdenSJfj5+cHPzw8BAQGKbXoLvmvq6+sjMzNTzohERERERKRmXC5JREREGiUtLQ27d+9GcHAwEhISkJmZiY0bN6Jp06aKMXFxcXj48CH09fXRvHlzGdNWflWqVMGhQ4fg7e2N77//HjExMcWOa9SoEebMmcOb10REpLRdu3ZBCIEhQ4ZgyZIlJY7V0tLCN998g+joaPz555/YtWsXP3OIiOilfvzxR+Tm5sLS0hJHjhyBnp5eqXMcHBywfv16XLhwQQ0JSZkCKVtbWzg7O8PZ2Rl2dnZyxiUiIiIiIhmwYIqIiIg0xs8//4y5c+fi8ePHAKBou5+RkVFonJ+fH0aNGgV9fX3cu3cPJiYmcsTVKBMmTMCECRNw5coVhIWFISkpCXl5eahVqxasrKxgbW1dYgcqIiKiF12+fBkAMH78eKXnfPjhh/jzzz8RFRWlqlhERFQJnD59GkIIzJgxQ6liKQB4++23AQD//POPKqNptJ9++qnEAik7O7tCBVLKvnZERERERFQ5sWCKiIiINMLChQuxdOlSSJKEKlWqoG3btggLCyt27IgRI/D5558jMTERe/bswYQJE9ScVnNZWFgU2bqCiIjodaSlpQEAGjRooPQcU1NTAMCjR49UkomIiCqHe/fuAQDat2+v9Jzq1asDALd9U6EZM2ZACAFJklC1atVCBVK2trYskCIiIiIiokK05A5AREREpGrh4eFYunQpAGDUqFFISEjA+fPnXzpeS0sLw4cPhyRJOHHihLpiEhERURkq6BAZGxur9JyCsewuSUREJSnofvsqxU/3798HABgaGqokE/1HCAF7e3sMGDAAAwYMgL29PYuliIiIiIioCBZMERERUaX3888/Q5IkdOnSBZs3b1bqAnWXLl0AgFvyEBERVVDW1taQJAm//PKL0nM8PT0hhICVlZUKkxERUUXXsGFDAMCtW7eUnnPmzBkAQPPmzVWSiQBHR0dUqVJFsfhp9uzZsLGxQa1atTB48GD88MMPiIiIUGzTR0REREREmo1b8hEREVGlFxAQACEEpk6dqvQcMzMzAMC///6rolSaY/PmzSp53jFjxqjkeYmIqHJ4//33cfToUfj5+WH8+PHw8PBQbIf0oszMTEyfPh2nT5+GEAIjR45Uc1oiIqpInJ2dcf36dfj4+GDs2LGljk9LS8PatWshhECPHj3UkFAz+fn5ITs7G+fOnYO/vz/8/Pxw7tw5PHz4EIcOHcLhw4cBPOvyZW9vr9iuz8rKStE1jIiIiIiINIeQuJyCiIiIKrlq1aohKysLYWFhhTpGaGlpQQiBqKgoWFhYFJoTGRkJa2tr6OrqIisrS92RK5WCf+eyJIRAbm5umT4nERFVLpIkwcHBAWfPnoUQAnXq1IGrqytsbW1Rt25dCCGQmJiIkJAQ7Ny5E8nJyZAkCfb29ggICJA7PhERlWMXLlxAp06dAADr16/HuHHjABT/HfP+/fsYNmwY/P39oauri+vXr6Np06ZyRdc4OTk5CAkJgb+/P/z9/XH27FnFVooF31MNDQ3h4OCA/fv3yxmViIiIiIjUjAVTREREVOkZGRkhPT0dJ0+eRPfu3RXHSyqYOnbsGPr164c6deogMTFR3ZErFS2tst8FWgiBvLy8Mn9eIiKqXB48eIABAwbg3LlzAPDSAt6CSyNdunTBoUOHYGxsrLaMRERUMX322WdYvXo1hBAYNmwY3nvvPYwYMQJCCPz666+oVq0agoKCsG3bNjx69AgAsHjxYsybN0/m5JotNzcXoaGhOHToEDw9PZGWlgaA3zGJiIiIXocquqcKIXDq1Kkyf16i4nBLPiIiIqr0mjRpgujoaNy4caNQwVRJTp8+DQBo2bKlKqNphNjYWLkjEBGRhjI2NsaZM2fg5eUFT09PXL16tdhxrVu3xpQpUzBp0iSVFPoSEVHls2rVKmRlZcHLywu7d+/G7t27FYW5EydOVIwrKMqdMWMGi6VklJmZiTNnzsDPzw9+fn4IDw9Hbm4uhBDgmnIiIiKi1+Pn51fq+dSLi9cKxip7nEiVWDBFRERElV7Pnj1x+fJlrF27Fh9//HGp4//991+sW7cOQgj06dNHDQkrN243QUREctLS0sKUKVMwZcoUxMfH4/Lly0hNTQUAmJiYwNLSEqampjKnJCKiikYIgV9++QVDhgzB8uXL4e/vj/z8/CJjunTpgnnz5qFfv34yJdVMLyuQAlDohl61atXQtWtXODk5yRWViIiIqMJydHQsscApLi4ON27cAPDs3NjMzAz16tUDACQmJuL27duQJAlCCJibm6NBgwZqyU1UgFvyERERUaUXExMDCwsL5ObmYtGiRZg/fz6A4rfku3btGoYNG4bo6GhUr14dt27dQp06deSMT0REREREROVceno6Lly4gKSkJOTl5aFWrVro0KEDateuLXc0jXH8+PFSC6SqV6+Obt26wcnJCc7OzrCxsYGODteVExEREZW1o0eP4oMPPkB+fj7mzp0Ld3f3IufGKSkp2LhxI7799lsIIbB161YuNCC1YsEUERERaYSVK1fiiy++gBACNjY2cHFxwVdffQUhBBYsWABdXV0EBQXh+PHjilXB69atw4cffihzciIiIiIiIiIqTcGiqOdvedSoUaNQgVSnTp2gra0tY0oiIiKiyu/69evo2LEjdHR0cObMGbRp06bE8VeuXEG3bt2Ql5eHsLAwtGjRQk1JSdOxYIqIiIg0xooVKzBv3jzk5OS8tE2sJEnQ1tbGypUr8emnn6o5oWZJS0vDmjVrAAATJkwodTuk+Ph4eHt7AwBmzZqF6tWrqzwjERFVXE+ePMGuXbsAAP369Su1Y2RycjKOHj0KAHj//fehq6ur8oxERERUdrS0tFCzZk3Y29srCqSsra1ZIEVERESkZhMnToS3tzeWLVuGr7/+Wqk53333HebOnYuPPvoI69atU3FComdYMEVEREQa5erVq1i5ciUOHTqE5OTkQo8ZGhqif//++Prrr2FpaSlTQs3h6emJqVOnwtzcHNeuXSt1vCRJaNWqFW7evMnuX0REVCofHx+4u7ujYcOGiI2NLXW7ndzcXDRr1gxxcXHYunUrRowYoaakREREVBbCw8NhZWUFLS0tuaMQERERabTmzZvjzp07OHv2LGxtbZWac+7cOXTt2hVmZma4deuWihMSPcPNuYmIiEijtG7dGuvXrwcA3L17F0lJScjLy0OtWrXQvHlzXlhVo6NHj0IIAVdXV6XGCyEwYsQILFmyBAcPHmTBFBERlejgwYMAADc3t1KLpQBAR0cHI0aMwKpVq7Bv3z4WTBERUalyc3Nx+PBhBAYG4tatW0hPT0deXl6Jc4QQOHXqlJoSapaOHTvKHYGIiIiI8Gy3iFdVsCtIQkJCWccheikWTBEREZHGatKkCZo0aSJ3DI0VGRkJAOjatavSc7p06VJoLhER0ctERERACAFHR0el5zg6OmLVqlUIDw9XYTIiIqoM/P39MW7cONy9e1dxrKTNHIQQkCTppdvD05u7fv06WrRoIXcMIiIiIo1nZGSEpKQk+Pv7K91hys/PD8CznUCI1IUFU0REREQki6SkJACAqamp0nPq168PAEhMTFRJJiIiqjwKVjM2btxY6TmNGjUCAMTFxakkExERVQ6RkZF45513kJ2dDUmSoK+vD3NzcxgZGbFrsYxat26NevXqwcnJCc7OznByckKrVq3kjkVERESkcRwcHLB7924sX74cQ4YMKbWo/fr16/i///s/CCFgb2+vppRELJgiIiIiIpno6+vj8ePHyMzMVHpOwVhtbW1VxSIiokqi4LMiKytL6TnZ2dkASu4QQkREtGjRImRlZaFKlSr44Ycf4O7uDn19fbljaTxJkpCQkICdO3di586dAIC6devC0dFRUUBlYWEhc0oiIiKiyu+zzz7D3r17kZaWBjs7OyxYsABjxoyBiYlJoXEPHjzA5s2bsWTJEjx8+BBaWlqYNWuWTKlJE7FgioiIiCqN8ePHA3i21cH69euLHH8dLz4XlR1TU1PcuHEDYWFhSm/LFxYWBuC/TlNEREQvU69ePdy+fRuXL1+GnZ2dUnOioqIAAHXq1FFlNCIiquDOnDkDIQTmzp2LyZMnyx2H/uePP/6Av78//Pz88PfffwN41p149+7d2L17NwCgdu3ahQqoLC0t5YxMREREVCnZ2dlhxYoVmDVrFtLS0jBr1ix8/vnnaNasGerWrQshBBITExEbGwtJkhQL177//nulr+EQlQUhcdkkERERVRJaWloQQgAA8vLyij3+KiRJghCi0HNR2ZkwYQLWr1+PFi1aICoqCrq6uiWOz8nJQdu2bXHjxg2MHj0amzZtUk9QIiKqkEaPHo2tW7fCxsYGISEhSs2xsbFBREQEhg0bhh07dqg4IRERVVQGBgZ48uQJQkJC0KlTJ7njUDGSkpLg7++vKKC6cuWK4rHnrw/UqlULDg4O6N69O6ZOnSpHVCIiIqJK688//8S0adMQFxenOFZwLvZ8mYqpqSk8PDzg4uKi9oyk2VgwRURERJWGmZmZ4mQ7Nja22OOv4/nnorJz9uxZ2NvbQwgBFxcX+Pj4oFq1asWOzczMxJgxY7B3714IIXD69Gk4OTmpOTEREVUkR48exYABAyCEwNSpU7F69eqXng9IkoQZM2bAw8MDQgjs3bsX7777rpoTExFRRWFpaYmrV6/izJkz6NKli9xxSAkpKSkICAiAn58f/P39cfny5UI36bhYioiIiEg1cnJysH//fpw8eRJRUVFITU0FABgbG6Nt27bo1asXhgwZUuqCaiJVYMEUEREREclm5MiR2L59O4QQaNSoESZMmAAHBweYmpoCAOLj4xEQEIDffvsN9+7dAwB2/SAiIqX16tULp0+fhhACHTt2xPTp04v9nPHw8EB4eDgAwNHREb6+vnLGJiKicm7evHn47rvv8O233+LLL7+UOw69oosXL2LPnj3w8PDAo0eP2F2aiIiIiEhDsWCKiIiIiGTz9OlTDB48GCdPniyxC1jBKWvv3r2xf/9+6OvrqysiERFVYKmpqXB2dsbly5dL7TYpSRLatm0LX19fmJiYqCkhERFVRMnJybCyskJWVhZCQ0NhZmYmdyQqwaVLl+Dn5wc/Pz8EBATgwYMHAP77nlmlShV06dIFp0+fljMmERERERGpGQumiIiIiEhWkiTBw8MDK1euVHSRelHjxo0xe/ZsTJky5Y22VyQiIs3z5MkTzJ07F+vWrUNmZmaxY6pXr46JEydiyZIlqFq1qpoTEhFRRXTp0iUMHDgQWVlZWLp0KVxdXWFoaCh3LELpBVL6+vqws7ODk5MTnJ2dYWdnhypVqsgZmYiIiIiIZMCCKSIiIqL/ycrKwsOHD1GnTh1oaWnJHUfjSJKEyMhIXLhwASkpKQCA2rVrw9raGu3bt2ehFBERvZG0tDScPn262M+Z7t278yY3ERG9stu3b8PW1hYpKSkQQqB27dqoVq1aiXOEEIiJiVFTQs3i4uJSbIFU1apVixRI6enpyRmViIiISKOkp6cjNjYW6enpSm2D7OjoqIZURCyYIiIiIg3w+PFjBAQEAHh2om1gYFDo8ZSUFEycOBGHDh1Cbm4uDAwM8NFHH+Hbb7/lKlMiIiIiIiIqYs+ePfjwww+Rnp6OV7nELoRQ6iYRvTotLS0IISBJEpycnNCjRw84OzvD1taWBVJEREREMvD29oanpyeioqKUPmcWQiA3N1fFyYie0ZE7ABEREZGq7dmzB+7u7mjUqBFu375d6LH8/Hz069cPERERihP29PR0rF69Grdv38aePXtkSExERERERETlVXBwMEaMGKEofGratCnatWsHIyMjdisuB4QQuHjxImrUqIHq1avDwMAAHTp0YNdiIiIiIjXJy8vDe++9h4MHDwLAKy0wIFInFkwRERFRpXfs2DEAwNChQ4tcvN6xYwfCw8MhhIC1tTWcnJzg7++PiIgI7Nu3D3/99RfeeecdOWITERERERFRObR06VLk5eXB0NAQW7duRf/+/eWORAAWLFiAgIAAnDt3Dg8fPsShQ4dw+PBhAIChoSHs7e3h7OwMZ2dnWFlZsYCKiIiISEXWrl2LAwcOAADq1asHd3d3dOzYESYmJlxgQOUKt+QjIiKiSq9du3aIjo7Gtm3b4ObmVuixfv364dixY+jUqRPOnj0LHR0d5OTkwMHBAaGhoXB1dcUff/whU3IiIiIiIiIqb+rVq4eUlBT8+OOPmD59utxx6AXZ2dkICQmBn58f/P39ERwcjCdPngCAokiKBVREREREqmNra4vQ0FBYWFggMDAQxsbGckciKhYLpoiIiKjSq1+/PpKTkxEcHIzOnTsrjufk5MDIyAhPnz7Fhg0bMHbsWMVjmzZtwvjx49GsWTPExMTIEZuIiIiIiIjKoRo1aiAzMxOhoaGwtraWOw6VIicnB+fPn4e/vz98fX0RHByMzMzMQgVSRkZGuH//vowpiYiIiCqPmjVrIiMjo9hF7ETlCfudERERUaWXmpoKANDT0yt0PDQ0VLHK9MVt91q0aAEASEhIUENCIiIiIiIiqiiaNWsGAMjMzJQ5CSlDV1cX3bp1w5w5c3DixAncu3cP8+fPR82aNQEAkiTh4cOH8oYkIiIiqoRatmwpdwSiEunIHYCIiIhI1apVq4b09HQkJSUVOh4QEAAAePvtt1GvXr1Cj1WtWlVt+YiIiIiIiKjicHFxweXLl3Hs2DHY29vLHYdKkZmZiTNnzsDPzw9+fn4IDw9Hbm4ugGfFUkRERERUtszNzREZGalYzE5UXrHDFBEREVV6b731FgDAz8+v0PE///wTQgg4OjoWmZOcnAwAqFu3rsrzERERERERUcUxa9YsmJubY/Xq1QgLC5M7Dr0gMzMTx48fx5w5c9C1a1cYGxujX79++L//+z+cO3cOOTk5kCQJVatWRa9evbB06VLFgioiIiIienMjRoyAJEk4dOiQ3FGISsQOU0RERFTp9e7dGxcuXICnpyccHBzg4OCAjRs3IjQ0FEIIDBo0qMicS5cuAQAaNGig7rhERERERERUjtWoUQOnTp3C8OHD4ejoiJkzZ8LNzQ0tWrSAvr6+3PE01pw5c0rsIGVgYICuXbvC2dkZTk5OsLGxgY4Ob5EQERERlbXp06dj27Zt8PLywtChQ+Hg4CB3JKJiCYk9Z4mIiKiSi4+PR+vWrZGenl7ouCRJsLCwQFRUFIQQhR7r3r07AgICMHnyZPz888/qjEtERERERETlmLa2tuJnSZKKfJ8siRBCUcxDZUtLSwtCCEWRVI0aNdCtWzdFgVSnTp0KvXZEREREpDpJSUlwcXFBWFgYpk+fjpEjR6JVq1ZcYEDlCgumiIiISCMEBgZixIgRiI+PVxxr3rw5Dh06hFatWhUaGxMTg5YtW0KSJOzZswdDhgxRc1oiIiJ6U82bNwcAfPbZZ5g6darMaYiIqDLR0tJ67blCCOTl5ZVhGipgaGgIBwcHRYFUx44d3+i1IiIiIqLXwwUGVFGw3ywRERFpBAcHB8TGxiIoKAgJCQkwNTWFvb19se334+PjMX/+fABAnz591B2ViIiIysC9e/eQl5eHDh06yB2FiIgqmYULF8odgYrx4MEDFkgRERERlQMv9uxhDx8qr9hhioiIiIiIiIgqnSZNmuDff//F+fPn0bFjR7njEBERERERERFphMWLF7/RfC5QIHVhhykiIiIiIiIiqnRsbW2xd+9eREdHs2CKiIhIA6xbtw7Ozs5o0aKF3FGIiIiINBoLnqiiYIcpIiIiIiIiIqp0Tp8+jV69eqF9+/Y4f/48dHV15Y5EREREKqSlpQUhBOrVqwcnJyc4OTnB2dkZrVq1kjsaERERERGVQyyYIiIiIiIiIqJKae7cufjuu+/Qu3dv/Pbbb2jcuLHckYiIiEhFtLS0FD8LIRQ/16lTp1ABlYWFhRzxiIiIiIionGHBFBERERERERFVOt988w0AYM+ePYiKioK2tja6deuGdu3awdjYGNra2iXOX7BggTpiEhERURlJTEyEv78//Pz84O/vj6tXryoee76Aqnbt2nB0dFQUUFlaWsoRl4iIiIiIZMaCKSIiIiIiIiKqdAq25SkgSVKhP5cmLy9PFbGIiIhITZKTkwsVUF25cgUFt0OePycwMTGBk5MTdu/eLVdUIiIiokpLkiRERkbi4sWLSElJwZMnT1BaiQoXsZG6sGCKiIiIiIiIiCqd57fleR35+flllISIiIjKg/v378Pf319RRHX58uVCBVQsliYiIiIqWz4+Pli8eDHu3LnzSvN4XkbqoiN3ACIiIiIiIiKissaCJyIiInperVq18Pbbb+PevXu4e/cubt++jcePH5fa4YCIiIiIXt3cuXOxfPlypc61hBA8JyNZsGCKiIiIiIiIiIiIiIgqnUuXLsHPzw9+fn4ICAjAgwcPAEBxQ65KlSqws7ODs7OzjCmJiIiIKpeQkBB89913EEKgd+/eWLFiBfLz82FtbQ0hBHJzc5GamoqwsDB4eXnhwIEDsLe3x65du1CvXj2545MG4ZZ8RERERERERERERERU4ZVWIKWvr68okHJycoKdnR2qVKkiZ2QiIiKiSmfcuHHYvHkzzMzMcP36dejo6CA6Ohpt27YtditkLy8vTJkyBe3bt0dISAj09PRkSk6ahh2miIiIiIiIiIiIiIioQqtdu3aRAqmqVasWKZDiDTgiIiIi1Tp79iyEEJg+fTp0dEovSZk8eTJOnz6NvXv3wtPTEzNmzFB9SCIAWnIHICIiIiIiIiIiIiIiehOpqamKnwcPHgxfX188ePAAp06dwvz58+Ho6MhiKSIiIiI1iI+PBwC0adNGcUxL67/SlJycnCJzRo8eDUmSsGPHDtUHJPofdpgiIiIiIiIiokpHW1v7tecKIZCbm1uGaYiIiEgdCjpLHTx4EAEBAXBwcFB0l7KysoIQQuaERERERJVfQUFU3bp1FccMDAwUPycnJ6NBgwaF5jRq1AgAcPPmTTUkJHqGBVNEREREREREVOkU3DAlIiIizeDr6wt/f3/4+fnh3LlzePjwIQ4ePIhDhw4BAAwNDWFvbw9nZ2c4OzuzgIqIiIhIRerUqYO4uDg8evRIcaxevXrQ1tZGfn4+rl69WqRgqqArVXp6ulqzkmZjwRQRERERERERVToLFy4sdUxGRgauX7+OEydO4OnTp7Czs0OfPn3UkI6IiIjKmpOTE5ycnLBgwQJkZ2cjJCREUUAVHByMhw8f4tChQzh8+DCAogVU1tbWMv8NiIiIiCqHNm3aIC4uDn///TccHBwAAHp6emjTpg2ioqKwY8cO9OzZs9CcLVu2AECRQioiVRISl1wSERERERERkQa7f/8+PvzwQxw6dAhr1qzBlClT5I5EREREZSgnJwehoaHw8/ODv78/zp49i4yMDEWHKW7HS0RERFR2li1bhvnz52PEiBHYtm2b4vh3332HuXPnQktLC3PnzoWrqysyMjKwadMmrF27FkIITJo0Cb/88ouM6UmTsGCKiIiIiIiIiDRebm4ubG1tERUVhcDAQNja2sodiYiIiMpYZmYmAgMDceLECaxfvx6PHj2CJEkQQiAvL0/ueERERESVQnR0NNq2bQsDAwPcu3cPNWvWBPDsXMzS0hK3b98usjWyJEkwMTFBZGQkGjVqJEds0kAsmCIiIiIiIiIiAuDj4wN3d3cMHz4cO3bskDsOERERvaHMzEycOXMGfn5+8PPzQ3h4uKKT1PO3RqpXr4709HS5YhIRERFVOv7+/sjNzYWVlRVMTEwUx+/cuYNRo0YhKCio0HhLS0ts2bIF7du3V3dU0mAsmCIiIiIiIiIiAhAeHg4bGxs0aNAA9+7dkzsOERERvaJXKZDq2rUrnJyc4OzsDBsbG+jq6soVm4iIiEjjXLt2DdHR0cjNzYW5uTmsrKzkjkQaSEfuAERERERERERE5cHTp08BACkpKTInISIiolfVtWvXlxZIGRgYoFu3booCqU6dOkFHh7dHiIiIiOTSsmVLtGzZUu4YpOH4jYCIiIiIiIiICMDevXsBAHXq1JE5CREREb2qc+fOKX6uUaMG7O3tFQVSHTt2hLa2tozpiIiIiIiovGHBFBERERERERFptIyMDHh4eGDNmjUQQqBnz55yRyIiIqJXNGDAAEWBlLW1NbS0tOSORERERERE5ZiQnu9LS0RERERERERUCfTo0aPUMfn5+Xjw4AGuX7+O7OxsSJIEAwMDhIeHw9zcXA0piYiIiIiIiIiISA4smCIiIiIiIiKiSkdLSwtCCLzKZY+mTZvi999/R7du3VSYjIiIiIiIiIiIiOTGLfmIiIiIiIiIqNJxdHSEEKLEMVpaWqhRowaaNWsGJycnDBgwALq6umpKSERERERERERERHJhhykiIiIiIiIiIiIiIiIiIiIiItIYWnIHICIiIiIiIiIiIiIiIiIiIiIiUhcWTBERERERERERERERERERERERkcbQkTsAEREREREREZE6JCYm4vLly0hNTQUAmJiYwNLSEvXq1ZM5GREREREREREREakTC6aIiIiIiIiIqNKSJAnr1q3Dzz//jCtXrhQ7xsLCAtOmTcOECRMghFBzQiIiIiIiIiIiIlI3IUmSJHcIIiIiIiIiIqKy9uDBAwwePBhnz54F8Kx4qjgFRVJdu3bFwYMHYWRkpK6IREREREREREREJAMWTBERERERERFRpSNJEpycnHDmzBkAQK1ateDq6gpbW1vUr18fAJCQkIDz589j586dSElJgRAC9vb28Pf3lzM6ERERERERERERqRgLpoiIiIiIiIio0tm6dStGjx4NIQRGjhwJT09P1KhRo9ixjx8/xpQpU7BlyxYIIfD777/j/fffV3NiIiIiIiIiIiIiUhctuQMQEREREREREZW1bdu2AQCcnJywZcuWlxZLAYCBgQF8fHzg5OQESZLw+++/qysmERERERERERERyYAFU0RERERERERU6UREREAIgalTpyo9Z9q0aQCACxcuqCoWERERERERERERlQMsmCIiIiIiIiKiSic1NRUA0KxZM6XnFIwtmEtERERERERERESVEwumiIiIiIiIiKjSMTQ0BADExcUpPSc+Ph4AULNmTZVkIiIiIiIiIiIiovKBBVNEREREREREVOlYWloCADZu3Kj0nIKxBXOJiIiIiIiIiIiocmLBFBERERERERFVOsOGDYMkSfjzzz+xaNEiSJJU4vglS5Zgz549EEJg+PDhakpJREREREREREREchBSaVcMiYiIiIiIiIgqmJycHLRr1w7Xrl2DEAJt2rTBuHHjYGtri7p160IIgcTERISEhMDHxweXL1+GJElo3bo1Ll68CB0dHbn/CkRERERERERERKQiLJgiIiIiIiIiokrp9u3b6NmzJ2JjYyGEKHGsJElo3rw5Tp8+jSZNmqgpIREREREREREREcmBW/IRERERERERUaVkZmaGS5cuYdasWTA0NIQkScX+Z2hoiM8//xyRkZEsliIiIiIiIiIiItIA7DBFRERERERERJVednY2wsPDcfnyZaSmpgIATExMYGlpiY4dO0JPT0/mhERERERERERERKQuLJgiIiIiIiIiIiIiIiIiIiIiIiKNwS35iIiIiIiIiIiIiIiIiIiIiIhIY7BgioiIiIiIiIiIiIiIiIiIiIiINAYLpoiIiIiIiIiIiIiIiIiIiIiISGOwYIqIiIiIiIiIiIiIiIiIiIiIiDQGC6aIiIiIiIiIiIiIiIiIiIiIiEhjsGCKiIiIiIiIiIiIiIiIiIiIiIg0BgumiIiIiIiIiIiIiIiIiIiIiIhIY7BgioiIiIiIiIiIiIiIiIiIiIiINAYLpoiIiIiIiIiIiIiIiIiIiIiISGOwYIqIiIiIiIiIiIiIiIiIiIiIiDQGC6aIiIiIiIiIiKjS8/PzgxACQgj4+fnJHYeIiIiIiIiIiGTEgikiIiIiIiIiIiq3ni90Ku4/AwMDtGjRAqNHj8bp06fljktERERERERERBUAC6aIiIiIiIiIiKjCysjIwI0bN/D777+jZ8+eGDt2LPLy8uSORURERERERERE5ZiO3AGIiIiIiIiIiP6/vbuP1Xr+/wD+PCedbheSqEUamalTrKiNJUTWadQm+Sd3GYU/mJmbTAe5WSHT5mCYxcYw9yaZhNxV6ObSQnOTsJ2QVeecctP1/cOvw6FOJ/k5Tufx2K7tc33er/fr/brOn2fPfT7QFJMnT85FF11U/71YLOaHH37IO++8k5kzZ6a6ujqzZ8/OAQcckGnTpjXYO3z48BSLxX97ZAAAAAD+gwSmAAAAAGgRunfvnv79+//l/nHHHZdTTz01gwYNyqZNm3LXXXfluuuuS1lZWTNMCQAAAMB/nVfyAQAAANDiHX744amoqEiSbNiwIStXrmzmiQAAAAD4rxKYAgAAAGC30KdPn/rrzZs3N1ibP39+SkpKUlJSkvnz52+3x+rVqzN58uT06dMn7du3T8+ePTNmzJi89tprSZLKysr6Ptuyda2ysjJJMm/evIwbNy4HHHBA2rZtm4MOOqhBfaFQyLRp0zJy5Mj06tUr7dq1S+fOndO3b9+cffbZeffddxv9zX+eZ/369amsrEx5eXk6d+6c7t27Z9SoUXn77bcb7Kuurs61116bfv36pVOnTtlnn31y2mmn5cMPP2z0PAAAAIDdgVfyAQAAALBb+PLLL+uvDzzwwJ3eP2/evJx22mnZuHFj/b1vv/02zz77bJ577rlMmzZtp/pNmTIlN99883bX58+fn+OPP/4v93/66aesWrUqq1atyuzZs3PVVVfllltu2eF5X331VUaMGJFPPvmk/l5NTU1eeumlzJ07N48++mjGjRuXZcuWZdSoUfn666/r62pra/Pcc8/l5ZdfzksvvbTNuQAAAAB2FwJTAAAAALR4K1euzAsvvJAkGTp0aPbbb7+d2v/ZZ5/l1FNPTU1NTfbYY49Mnjw5Y8aMSZcuXVIoFDJjxoxMmTIlQ4YMaVK/p556KsuXL095eXkuu+yy9O/fP3V1dVmyZEl9zS+//JJOnTqloqIiJ5xwQg477LB06dIl1dXV+eijj3LXXXflyy+/zK233ppDDz005557bqNnjhs3LmvWrMnVV1+dU045JR07dsyCBQsyderUrF+/PhMnTszgwYMzevTo1NXV5aabbspxxx2Xtm3bZs6cObnpppuyefPmnHPOOfn0009TVla2U39DAAAAgJZCYAoAAACAFqG6ujqFQqH+e7FYzI8//ph33nknM2fOTF1dXfbcc8/MnDlzp3tffvnlqampSZI88cQTGTNmTP3a4MGDc8YZZ+T444/Pe++916R+y5cvz4knnpgXX3wx7dq1q78/bNiw+usjjjgia9asyV577fWX/SNHjswll1yS0aNH55VXXsn111+fs846K23atNnumUuWLMnrr7/eINQ1ePDg9O3bN6NHj86GDRsyZMiQFIvFLFy4MAcffHB93dFHH51u3brl4osvzurVq/Piiy9m7NixTfqtAAAAAC1NaXMPAAAAAABNUVVVlfLy8vrPgAEDMmzYsFx55ZWprq7OpEmTsnDhwgwdOnSn+n7zzTd5/vnnkySnn356g7DUVh07dsx9993X5J6lpaW5//77G4Sl/qxbt27bDEttVVZWlhkzZiT57XWDf3w61bZceuml23wCVkVFRXr37p0kWbt2bW688cYGYamtzj333LRv3z5J8uabbzZ6FgAAAEBLJjAFAAAAQIu3ZcuWPPbYY6mqqsrmzZt3au9rr72WX3/9NUkyYcKE7dYNHDgwAwcObFLPY445JgcddNBOzbF58+asXr06K1asSKFQSKFQSLFYrF9funRpo/vPPPPM7a4NGDAgSVJSUpLx48dvs6ZDhw7p27dvkt9eUQgAAACwuxKYAgAAAKBFmDp1aorFYoNPbW1tli1bliuuuCIbN27MnXfemREjRqS2trbJff/4mr9BgwY1Wjt48OAm9dwaUNqRmpqa3HLLLRk4cGA6deqU3r17p1+/fvVP0TryyCPra7/77rtGex166KHbXdv6JKtu3bpl77333mHdhg0bmjQ/AAAAQEskMAUAAABAi9WhQ4eUl5dn+vTpufvuu5MkCxYsyM0339zkHuvWrau/3nfffRut3dH6Vo2Fkrb64osvUl5enmuuuSbLli2rf8rV9tTV1TW63rFjx+2ulZaW7rDmj3U7mgUAAACgJROYAgAAAGC3MHHixHTt2jVJ8uCDDzbrLG3atNlhzYQJE/L555+npKQk5513XubOnZuvvvoqmzZtypYtW1IsFhsEl/74ej4AAAAA/j6BKQAAAAB2C6Wlpenbt2+S5Ntvv83333/fpH1/fBrU2rVrG63d0XpTrVy5MgsWLEiSXHPNNXnggQdy0kknpVevXmnXrl1KSkqSJD/88MM/ch4AAAAAvxOYAgAAAGC38csvv2zzujH9+vWrv37//fcbrV28ePHfG+xPPvroo/rr8ePH/7+fBwAAAMDvBKYAAAAA2C3U1tZmxYoVSZIOHTqkW7duTdo3fPjwlJb+9m+yhx9+eLt1S5cuzdKlS3d90DQMc9XU1Gy37p577vlHzgMAAADgdwJTAAAAAOwWKisrU1dXlyQZOXJk2rRp06R9vXr1SkVFRZLkySefzDPPPPOXmrq6ulxwwQX/2KxbXx2YJA899NA2a6qqqvLss8/+Y2cCAAAA8Js9mnsAAAAAAGiK6urqFAqFBvc2bdqUTz/9NLNnz86cOXOSJO3bt88NN9ywU73vuOOOvPrqq6mtrc24ceMyefLkjB07Nl26dEmhUMj06dOzYsWKHHXUUVm0aNEu/5Yjjzwy/fv3T6FQyL333pt169ZlwoQJ6dGjR9asWZNHHnkkTz75ZI455pi89dZbu3weAAAAAL8TmAIAAACgRaiqqkpVVVWjNfvuu28eeeSRlJeX71TvQw45JM8880zGjh2bmpqazJo1K7NmzWpQM3Xq1GzZsiWLFi1K+/btd3r+PyopKcnDDz+cE044IevWrcvjjz+exx9/vEFNeXl5nnjiifTs2XOXzgIAAACgIa/kAwAAAKDFKisry/77758TTzwxt99+ez7++OOcfPLJf6vXSSedlEKhkAsvvDC9e/dOWVlZ9ttvv1RUVGTOnDmprKzM+vXrkyR77rnnLs9+xBFHZMmSJZk0aVJ69+6dtm3bpmvXrjn66KNz2223ZeHChenRo8cunwMAAABAQyXFYrHY3EMAAAAAQEswYsSIvPrqqzn22GPz5ptvNvc4AAAAAPwNnjAFAAAAAE3wzTff5I033kiSDB06tJmnAQAAAODvEpgCAAAAgCSrVq3a7lpdXV3OOeec/Pzzz0mSs846698aCwAAAIB/2B7NPQAAAAAA/Becf/75qampyRlnnJFBgwala9eu2bBhQxYvXpy77767PlA1ceLElJeXN/O0AAAAAPxdAlMAAAAA8H8WL16cxYsXb3d97NixmTVr1r84EQAAAAD/tJJisVhs7iEAAAAAoLl98MEHefrppzNv3rysWbMma9euTbFYTPfu3TN06NCcffbZGTVqVHOPCQAAAMAuEpgCAAAAAAAAAABajdLmHgAAAAAAAAAAAODfIjAFAAAAAAAAAAC0GgJTAAAAAAAAAABAqyEwBQAAAAAAAAAAtBoCUwAAAAAAAAAAQKshMAUAAAAAAAAAALQaAlMAAAAAAAAAAECrITAFAAAAAAAAAAC0GgJTAAAAAAAAAABAqyEwBQAAAAAAAAAAtBoCUwAAAAAAAAAAQKshMAUAAAAAAAAAALQaAlMAAAAAAAAAAECrITAFAAAAAAAAAAC0GgJTAAAAAAAAAABAqyEwBQAAAAAAAAAAtBoCUwAAAAAAAAAAQKshMAUAAAAAAAAAALQa/wOvj1ZSPiKUawAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 789, + "width": 1190 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "def get_top_n_bigram(corpus, n=None):\n", + " vec = CountVectorizer(ngram_range=(2, 2)).fit(corpus)\n", + " bag_of_words = vec.transform(corpus)\n", + " sum_words = bag_of_words.sum(axis=0)\n", + " words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]\n", + " words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)\n", + " return words_freq[:n]\n", + "\n", + "\n", + "top_bigrams = get_top_n_bigram(merged_df[\"content\"], n=20)\n", + "\n", + "# Visualize top bigrams\n", + "plt.figure(figsize=(12, 8))\n", + "x, y = zip(*top_bigrams)\n", + "plt.bar(x, y)\n", + "plt.xticks(rotation=90)\n", + "plt.xlabel(\"Bigram\")\n", + "plt.ylabel(\"Frequency\")\n", + "plt.title(\"Top 20 Bigrams in Sierra Club Press Releases\")\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Sentiment Analysis Comparison\n", + "\n", + "Compare the sentiment analysis results from the LLM-based few-shot learning approach with a traditional lexicon-based method.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sentiment Analysis Comparison:\n", + "textblob_sentiment_category Neutral Positive\n", + "few_shot_sentiment \n", + "Negative 7 52\n", + "Neutral 0 11\n", + "Positive 1 29\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOwAAAOpCAYAAACpd7jUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AADoZElEQVR4nOzdZ3gU1f/38c8mkJ4QOqH3Lk16BwUElSKCIAhIURFBLIj4Qyk27AgKglRBEBuoIIpKCBAJECkCoghSQ0+AUEJCkrkf5M78d8lmd9MX8n5d117Z3Tlz5sxk2n7nFIthGIYAAAAAAAAAuAWPvC4AAAAAAAAAgP9DwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA5AvnLkyBFZLBZZLBZVrFgxr4uD/+/atWt6//331bZtWxUrVkwFChQw/0+TJ0/O6+LlG+3btze3+4YNG/K6OLe91G1tsVjyuihua8iQIeY2WrRoUV4XBy7Kq/8bx9Stg/sx3Epu1WvRhg0bzHK3b98+r4uDTCBgh3wrNjZWK1as0PDhw9WgQQOVKVNG3t7eCgwMVPny5XX33XdrwoQJ2rJlS14XFbitxcTEqGnTpnruuee0adMmRUdHKykpKUt5Wt+gZPWHm3UQKyvBw5vLZLFY1LBhwwzlERMTI29v7zT5ALDPOiiQXa/b5SHCokWLnK6rj4+PSpYsqTZt2mjChAn6+++/87rYt4SkpCT98MMPGjp0qOrVq6eiRYuqYMGC8vPzU0hIiJo3b65HH31Us2bN0r59+/K6uECmtW7d2uacsWLFirwuEnBbIWCHfOfatWt64403VLFiRfXr10/z58/X7t27dfLkSSUkJOjKlSs6fvy4fvvtN02bNk0tW7ZUjRo1tHz5chmGkdfFB24748ePN3+wFChQQF26dNFjjz2mUaNGadSoUWratGkelzDn7Nq1S3v37nU5/RdffKGEhIQcLBGAW9HkyZNzJKAYHx+vs2fPavPmzZo2bZrq1Kmj0aNH68aNG9m2jNvNli1bVLduXXXv3l0LFy7Unj17FBMTo8TERMXFxen06dPaunWrFi1apFGjRqlu3bq677778rrYWUJtubyXFzXADh48qPDwcJvvFi9enCvLBvKLAnldACA3HTt2TPfff7/+/PNPm+/Lly+vevXqqXjx4kpKStLp06e1e/dunTlzRpJ04MABPfzwwzp+/LheeOGFvCg6cFtKTEzU8uXLzc+//fab2rZtm4clyn2LFy/WO++841Lazz77LIdLA9xegoKCNGrUKIdptm3bpu3bt0uSSpcurV69ejlMfzs+RAgMDNSgQYPSfH/t2jUdPnxYW7ZsUXx8vJKTk/XRRx/p3Llz+uKLL/KgpO7t559/Vo8ePRQfH29+V758eTVs2FDFixdXcnKyzp8/r927d+vo0aNmmosXL+ZBaYGssXdPsm7dOp0+fVqlSpXKgxIBtx8Cdsg3jhw5ohYtWuj06dOSUvo56d+/v1566SXVqVMnTXrDMBQZGamZM2fq888/V3Jysq5du5bbxUY2q1ixIjUl3ciBAwd09epVSVLVqlXzTbCuaNGi8vT01NmzZ7Vs2TJNmzZNnp6eDuc5cOCAtm7dKkmqXbu2/vrrr9woKnBLK1KkiD766COHaSZPnmwG7KpVq+Y0/e3I2XaKjo7WE088oa+//lqStGLFCg0aNEjdunXLrSK6vZiYGA0cONAM1tWqVUuzZs1Kt9+o48ePa+XKlbdUf1jZifuxW5thGFqyZIn52dfXV3FxcUpKStLSpUv1/PPP52HpkKp9+/YcZ7c4msQiX0hISFCfPn3MYJ2Pj4++/fZbff7553aDdVJKQK9Jkyb67LPPtHv3btWtWzc3iwzkCxcuXDDfh4SE5GFJcleBAgXUv39/SdLJkyf166+/Op3HupmJvZowAJBTihYtqi+++MLmnunzzz/PwxK5n/nz5+v8+fOSpJIlS2rjxo0OO3kvV66cxowZox07dtCMELecsLAwHTlyRFJKDV3rpvjsz0D2IWCHfOHtt99WZGSk+Xnx4sXq2bOny/PXrVtXERER6tSpUw6UDsi/rPtB8vDIX5ekwYMHm++dNXU1DENLly6VJBUrVoxaLQBynaenp/r27Wt+ppavrXXr1pnvH330URUrVszleatUqZITRQJyjHVQrnfv3ho6dKgKFiwoSdq7d6927NiRV0UDbiv569cR8qW4uDjNmDHD/PzAAw/Y3HC6yt/fX61atXKY5ujRo3rllVfUvHlzlSxZUl5eXipZsqSaN2+uSZMm6fjx406Xk97w26tXr9YDDzygihUrysfHR0WLFlXXrl31448/pskjOTlZ3333ne677z5VqlRJPj4+CgkJUZ8+fRQREeG0DPY6ro2OjtZbb72lpk2bqnjx4vL19VWVKlX02GOPaefOnU7zTC3Xpk2b9Morr6hz584qX768/Pz85O3trZCQEHXs2FGvv/66+YTaGXujZO7evVtPP/206tatqyJFishisdgEZzPSMfLx48c1ZcoUtW3bViVLlpS3t7e8vLxUtGhR1a9fXw8//LBmz55t1tx05Pz585o2bZratWunkJAQeXt7q1ixYmrYsKHGjRvn0g+f9MoeGRmp4cOHq3r16vLz81PhwoXVtGlTvfHGG2Zz0+x248YNLVy4UD179lSFChXk6+uroKAg1ahRQ8OGDdMvv/zi0np06NDB/D4sLCzNCIW38xD0DRs2NGvurlq1SpcvX0437YYNG3Ts2DFJUv/+/c2b4txw/PhxTZw4UfXr11eRIkXk7++vmjVr6plnntHBgwddyuPGjRv6+eef9cILL6hDhw4qXbq0fHx85Ovrq7Jly6pr166aPn26rly54nK5/v77b73wwgtq3ry5ihUrJi8vL/n4+KhEiRK688479eijj2rx4sU2tTgdlW/JkiXq27evKleurMDAQPn7+6tSpUrq37+/Vq5cmaEmJZcuXdKbb76pJk2aqHDhwgoICFCNGjU0YsQI/fHHHy7nk1G5cY79559/NHbsWNWqVUsBAQEKCgpS/fr1NWHCBJfzTbVq1Sr16NHDHKW9bNmy6tSpk5YsWaLExMQM5ZXb9u/fr5deeklNmzY1r/fFixdXs2bN9Morr+jkyZPpzvvuu++a2zUwMFCHDh1yuKwLFy6ofPny5jxPPfWUOS11FOspU6aY302ZMsXuiK9DhgzJ8npb14TOzuvLlStXNGPGDHXp0kVly5aVj4+PChcurLp16+qpp54yuwPIjO3bt5vXSH9/fxUpUkRNmzbVm2++qdjY2Gxbh6ioKPN9hQoVsi1fa1evXtXs2bN1//33q0KFCvLz81NgYKCqVaumoUOHav369U7zsB4d2HqfWLlype6//36VL19e3t7eKlGihDp37qylS5eme/5LzatSpUrmd0ePHk131GFrrt6P2Zt/165dGjlypGrUqKGAgAAFBASoWbNmmjVrlt1zR2RkpIYMGaJatWrJ399fRYsWVYcOHTJVS3T79u165pln1KBBAxUvXlxeXl4qVaqU2rVrp7feesula07FihXNdUqtpXbixAm9/PLLql+/voKDg81r7ejRo236O0wvL+sA2qOPPpqjI1xfvXrVbB4vSY888oiKFSume+65x/zO1Vp26f3uWb9+vfr166fKlSubv3vatm2rjz76yOVBb/bv368PPvhADzzwgGrUqKHAwEAVLFhQxYsXV+PGjfXMM89ky4OHlStXmutQs2ZNl+f777//5OHhIYvFIm9vb7vX0CtXruiTTz7Rvffea17TCxYsqEKFCqlmzZq6//779cYbb6Q7gFl629ee7LyvQjYygNvcZ599ZkgyX5s3b86R5bz22muGj4+PzbJufvn4+BjTpk1zmE9oaKiZvl27dsbVq1eNfv36Ocx30qRJ5vxnz541WrZsmW5ai8VizJw502EZBg8ebKZfuHCh8fvvvxulS5dON09PT0+bMtiTkJBglClTxuF6pL78/f2NJUuWON3m1vMYhmFMmjTJ8PT0TJNfjx49zHkOHz5sfl+hQoV0854zZ47h6+vrUnlbtWrlsJzz5883ChUq5DAPT09PY+zYsUZiYmK6+dxc9uTkZOOVV14xPDw80s23UqVKxqFDh5xuy4yIiIgwqlSp4nS7dOrUyTh37pzD9XD2ateuXabKaH0cZfVS165dO7vHWlbKVLJkScMwDOPtt982v1uwYEG68w4ZMsRMt337dmP//v3Ztn7WrNc1NDTU+O677xzuu76+vsacOXMc5nns2DGjaNGiLv2/ixYtaqxbt85pOdM71u29BgwY4DCv0NBQl/bn5s2bGydOnHBatk2bNjk8X3p4eBhTpkwxDCPtOSwrcuMcO3v2bMPb29vh/2/79u1O8718+bLRrVs3h2Vs3bq1cerUqTTXo5wwadIkl885169fNx5//HGn+5+vr2+619rk5GTj7rvvNtM2a9bMuHHjRrrLfPDBB820tWvXNq5du2ZOsz5mnb0GDx5sk+/ChQvNaY6uh9amTp1qztOmTZt002Xk//bDDz8YpUqVclr+hx9+2Lh69arDvG7eZydNmuTwGlmmTBnj999/d2ndnalTp46Z7wsvvJAteVr78ssvXdpO9913n3Hx4sV087H+vw8ePNi4ePGi0b17d4d53nPPPTb7nb28XHlZc/V+7Ob533rrLYfHX5cuXYzr168bhmEYiYmJxsiRIx2WqV+/fg7vvVLFxMQYvXv3drqOwcHBxldffeUwrwoVKpjpDx8+bKxcudLptXb16tVO83L2yso9jDXr31Zly5Y1kpKSDMNI2UdTvy9WrJiRkJDgNK+bf/fEx8cbI0aMcLgejRo1snt/aa1Pnz4ubROLxeL0/tswHJ/Tbty4YXNsuvpb83//+585T58+fdJM//33312+rkuyex25efumJzvvq5C9GHQCtz3rp43ly5d3WksuM5566il9/PHH5ueAgAB16NBBpUqV0unTpxUaGqorV67o+vXrevHFF3X69Gl98MEHLuU9bNgwffHFFypQoIBatWqlqlWr6tq1a1q/fr05iu2UKVNUo0YN9ezZU507d9auXbvk4+Ojtm3bqnz58rp48aJ+++03XbhwQYZhaMyYMbrzzjvVokULp8s/evSonn32WV24cEEBAQHq2LGjSpYsqZMnTyo0NFTXrl1TUlKSpkyZouTkZE2dOtVuPklJSebT54CAANWpU0eVK1dWUFCQbty4oRMnTigiIkKxsbG6evWqHnnkERUsWFAPPfSQS9vpnXfeMWsYVKlSRU2bNpWfn5+OHDmS4dpIq1at0uOPP25+DgoKUosWLVS2bFkVKFBAly5d0oEDB7R3714lJCQ4zOvdd9/VuHHjzM/e3t5q166dypcvrwsXLig0NFQxMTFKSkrS9OnTdezYMX399ddpnkTbM2XKFHN7N2jQQHfccYcKFiyoXbt2mU0RDh8+rJ49e2rHjh0qUCDrp/yNGzeqa9eu5gAsFotFTZs2Ve3atZWQkKCIiAiztsgvv/yiVq1aafPmzSpevLiZh/WojVFRUVq1apUk+6MzVqtWLctldmcDBgzQhAkTlJSUpM8++0yPPvpomjTXrl0zn2TXrl1bjRs31t9//53jZYuMjNT//vc/JSQkqGjRomrfvr0KFy6sI0eOKCwsTDdu3FBcXJwef/xxeXp6atiwYXbzuXr1qqKjoyVJhQsXVp06dVShQgUFBAQoISFBhw8fVkREhK5fv67o6Gh169ZNYWFhatmypd38PvzwQ5vaRMWKFVPz5s0VEhIii8WimJgY/f3339q/f7+SkpIcruNXX32lAQMGmE/rfX191bx5c1WsWFEeHh46cOCAtmzZosTEREVERKhFixbavn27SpYsaTe/P/74Q127drWpKdi4cWPdcccdNsfHpEmTVLhwYYdly6icPscuWrRII0eOlCTVqFFDjRs3lq+vr/7++2+Fh4fLMAxFR0ere/fu2r9/vwoVKmQ3nxs3bujee+/Vxo0bze9KlSqltm3bKjAwUAcPHtTmzZu1efNm9erVS5UrV87ilsk+V69eVZcuXRQeHm5+V6VKFd15550qXLiwYmJiFB4erpMnTyouLk6jR49WbGysXnrpJZt8UmvD1KtXT9HR0dq6dasmT56s1157Lc0yFyxYYB7/3t7eWrZsmXx9fc3pvXr1Ut26dW1Gum3SpIndkWybN2+epfVPTk62qVXTpk2bLOUnpQxeMWDAAPNY9fT0VOvWrVW1alVduXJFmzZtMmsrLlu2TIcPH9b69evl4+PjNO8ZM2aY54qqVauqWbNm8vLy0p49e8xuUqKionTPPfcoLCxMDRo0yNK6VKlSRfv27ZOUcrw8++yz6Z4rMuqDDz7Qc889Z9Z0s74vSUpK0r59+xQZGSnDMLR69Wq1b99e4eHh8vPzc5hvYmKievfurd9++01eXl5q2bKlqlSpouvXr2vTpk1mze6ffvpJzz77rGbPnm0zf61atTRq1ChdvnzZ7NohvRGHs8OcOXM0fvx4SVK9evXUoEEDeXp6auvWrWZNqZ9//lljxozRnDlz9OSTT2ru3Lny8PBQkyZNVKtWLbMm8uHDhyVJX3zxherXr68XX3wx3eWePn1aHTt21P79+83v6tSpo/r16ysgIEBnz57Vpk2bFB0drYsXL6pv375asmSJBgwY4HSdfv31Vz3xxBNKSkpS+fLl1aJFCwUFBenw4cPasGGDEhMTFRcXp759+2rv3r02tRmllO41oqOj9dtvv5n3BnfddZfdml7ZNcK1de25AQMGmF2adO/eXcHBwbp48aLOnz+vH3/8UT169MhQ3o899pgWL14sDw8PNWvWTDVr1lRycrIiIiL0zz//SJJ27NihQYMG2W1llCp13y1QoIBq166tatWqKTg42Bzwa/v27YqKipJhGJo+fbri4+M1a9asjG4KcxmPPvqo3nzzTUkp/Vk6+72ZlJRkM+DM8OHDbaYfP35cXbp0MVtfFCxYUE2aNFHVqlXl5+enq1ev6siRI9q9e3eWawpn530VckCehguBXGBdc8Le04usWrFihc1ThyFDhhiXLl2ySXPp0iVj4MCBNum++eYbu/lZPwlJrcnQsmXLNLWkrl27ZvP0qFq1asbo0aMNSUavXr2MM2fO2KSPiYkx2rZta6bv0KFDuutk/RTJy8vLfJpy83rFxMQYDzzwgJnWw8PDCA8Pt5tnfHy88eijjxqhoaHpPnG7fv268fbbbxsFChQwn1Jevnw53XJab88CBQoYhQoVMlauXGk331SuPNFt0KCBmeapp55K94n+5cuXjS+//NIYP3683enh4eE2T6u6du1qnD59Ok3Zxo0bZ7Mu7733nt38rMvu5eVlWCwWo0qVKsbWrVvTpP3yyy+NggULmukXL15sN8+MiImJsXnSV61aNSMyMjJNuqVLl9rUTrz//vvTzdPVJ38ZdavUsDMMw+jcubP5lPfo0aNp5luyZIk535tvvmkYhpErNexSj/3nn3/e5hgyDMM4fvy40aZNGzOtn5+fcfDgQbt5HjlyxBg9erSxdetW8yn8zS5dumQ899xzZn7Vq1e3m/bGjRtGsWLFbLZHeueT6OhoY8GCBcZbb71ld/revXvN/dRisRjPP/+8ceHChTTpDh06ZLRu3drmOLYnPj7eqFWrlpmuXLlydmvuLF682PD29ja3b3b9D3P6HOvt7W0UL17cWLt2bZp0YWFhRlBQkJk2tQahPdY1tCwWi/H666+nqdnwzz//GPXr17fZD2WnVkN2cbWG3aBBg2z20dDQ0DRpEhMTjVmzZpnXb09Pz3RrcK1cudLm+rlx40ab6QcOHDD8/f3NNO+//75L6+DqeSojNewuXLhgDBgwwEwfGBjosMapKzXsDh48aAQEBJjpmjZtavz77782aZKSkoz33nvPppbc6NGj012u9T7r5eVl+Pj4GEuXLk2TbvPmzTbXszvuuMOl2kCOLFiwwGb55cuXNz755BPj/PnzWcr3119/Ndffy8vLmDZtmt37kp07dxq1a9c2lz9y5Ei7+Vn/31P3065du6b5f964ccN4/vnnbY7Xw4cP283T1dpymZnn5vNQqVKl7B577777rs094fvvv29IMmrVqmXs2rXLJm1iYqIxduxYM31AQIBx5coVu8tPSkoyOnToYLOf7tixI026uLg4Y/LkyYbFYjGklJrM//33n908rWvFeXt7m7Wek5OTbdLt3bvXZj999NFH091OuVEb2TBSas1bH4979+61mW5dO65Xr15O87P3u6dJkybG/v37bdIlJycb06dPt9kfwsLC0s33xRdfNL788ss0v12s8/v++++N4sWLm/lt2rQp3fycbd///vvP5n8fGxvrcL3XrFljs//ffM9jvX+2adPGiIqKspvPjRs3jA0bNhgDBgywW0vQ2X12dt5XIWcQsMNtL/WHiSRj8uTJ2Zp3UlKSUalSJTP/Pn36pLnYpkpOTjZ69Ohhpq1SpYrdH6Q3Bxpq1KiR7k1EbGysUaRIEZv0HTt2TPdH8ZEjR8wAksViMU6dOmU3nfVFSZLRrVu3dPO8ceOG0b59e5uLSlZNmzbNzG/WrFnpprMuo4eHh8MLdypnN4iXL1+2+cGd3v/TFdYB0pYtWxrx8fHpph0zZoyZNigoyO6F/uampEWLFk33Am4Yhs2N9j333JPp9Uj1yiuvmPkVLlzYOHbsWLppv/32W5duqgjYGcbnn39ufv/aa6+lma9Tp07mPn78+HHDMHInYCfJeOKJJ9JNe/nyZaNmzZpm2kceeSTLy3/iiSfM/H788cc00/fs2WNOd9YU3ZmOHTuaeTkKhBiGYVy5csXmh3BERESaNHPnzjWn+/j4pPmxYW3p0qU22zk7/4euyMw51tvb29i9e3e6aT/66CMzbc2aNe2muXjxouHn5+fSNfns2bNGSEiITRnyMmC3ceNGm+u3s+ZY1kERR+ffxx9/3ExXvnx5M2ickJBgNG7c2JzWuXNnh9ejrAbsAgMDjVGjRqV5DRs2zLjrrrtsuvwoXbq08ccffzjM25XggXUAtGrVqg6bcaYGX1LPhekFQm4+rr744ot089y7d69NE+/58+c7XCdnEhISjEaNGqUpg4eHh1GvXj1j+PDhxieffGLs3r073XuqmyUlJRnVqlUz8/r2228dpj916pRRsmRJQ5JRsGBB85ph7eZmrG3atEm3SXZycrLRpEkTM2163brkVsDOx8cnTYDImnVTc0lGiRIl0jzATpWYmGjUqFHDTLtixQq76aybfzZv3txu02Br1sdietdQ64CdxWKx+yAk1erVq820AQEB6f6vcitg9/rrr5vLadiwYZrp1udKLy8vpwHrm+/XqlWr5vBBknUXAY7uUVwVERFh5te3b99007myfVPv1yQZn376qcPlWld4sPeQ68477zSn3/wgIyOc3Wdn530VcgYBO9zWLl26ZHMRmD59erbmv3btWpuLUnoBsFQnTpywqfX0008/pUlz84XLXo0xa4888ohN+pufIt7MulbMDz/8YDeN9UXJYrGkW3Mm1Z9//mlThr///tthemfOnDlj5vXAAw+km856mY4ustac3SBGRUWZ0xs0aJDZVTD++usvm/LZexpr7cqVKzZPuD755BOHZZfSr4lnrwxFixbN9LoYRspNu3X/HM4CHIZhGF27djXT9+vXz24aAnYptWUDAwMNKSVAb+3EiRPmk+y7777b/D43AnaBgYEOf0AbhmF8//33Nj+knKV3ZuvWrWZ+zz77bJrp4eHh5vSePXtmejm7du2y+cHhSmB++fLl5jz2avg0bdrUnD5u3Din+d3c12huysw51lGtJsNIeYCU+oDMYrHYrdUwa9YsM7+yZcs6fIhhGLZB0Jz8EepKwK5nz55mmlWrVrmUb2pA22KxpPuj9erVqzY1Mx966CHDMAxj/Pjx5nfFihVzen+R1YCdKy8PDw9j7NixTvuRMwznP24vXLhgEyxzFohKSkqy6SPuxRdftJvOuryuPEB89tlnzfTNmzd3mt6Z06dP29TITe9VuHBhY9iwYU4Dn6tWrcrwOe/NN990eJ9w8//dWRmsj9v0zhe5FbB7+umnHeY5f/58m/TO7vtffvllM+1zzz1nN411qwtn99iGkVLTLjg42JBkFCpUyG5w1jpg56gVgmGkvf/6888/7abLrYBd9erVHd4LJicn21RmcNZv9s33a+m1QEr1448/mmkbNWqUpXVJlXoOdnSv7Mr2te7Dz9H55OzZs+bvQeuHsdasA/VZubdydp+dXfdVyDn0YYfb2s2jLgYEBGRr/tb943Xr1k2lSpVymL5MmTK655579MMPP0iSQkND1aVLl3TT+/r66t5773WY5x133GG+r1q1qurXr+8wfd26dbVp0yZJMvvvcCS1PxNnZWjYsKE5WmxoaKhq1KiRbvrk5GT98ccf2rVrl06cOKHY2Nh0R3zatWuX0zJKUr9+/VxK50yxYsXk4+Oj69eva+/evQoPD89Uv4ehoaHm+wYNGqhhw4YO0/v7+6t///6aOXOmOb91P3r29OnTx+H0mjVrytfXV3FxcYqOjtbly5cVGBjo4hrY2r9/vzkarqenp0v90wwfPlxr166VlDJKFezz9fXVgw8+qIULF+qff/7R1q1b1axZM0nS0qVLlZycLEk51idQerp3755uP2SpunXrpuLFi+vcuXO6fv26tmzZYjNK3M1u3LihrVu3avfu3Tp9+rQuX75sM6Kf9Tnb3rFfrlw5831oaKgOHDig6tWrZ2CtUlj3e9O/f3+X+ozs2LGj+X7z5s020y5fvmz2iSW59r8aPHiwfv/9d1eKm2E5cY51dr4JDAxUlSpV9M8//8gwDB09etTm+iTZnhcfeugheXl5OcyzX79+euqpp5z2FZrTEhMTzZGvg4KCdN9997k0X4cOHfT333/LMAyFh4ere/fuadL4+flp2bJlatasmRISErRixQoVKVJEc+bMMdPMnz/f6f1FbkhOTtb06dP1888/a+7cuWrdunWm8/r9998VHx8vKeW6e//99ztM7+HhoaFDh+q5556TZLsvpcfV4/D999+XlDL659WrV+Xv7+90vvSULFlSYWFhWrFihWbMmKGIiAi76S5cuKD58+drwYIFGjp0qD766CO7/fJZn6sefvhhl8pw87nq2WefTTdt5cqV1ahRI4f5Wd+/pI5omlcefPBBh9NvPuc4S586Urtk/5741KlT5jmydu3aTu+xJcnHx0ctWrTQ2rVrdenSJe3du1f16tVLN72zc6vFYlH9+vXNe7AjR46kWc/cEhERoQMHDkhKuRfs379/mjQWi0UDBw7Uq6++Kimlvzvrka0d8fHxcXouyMz+eODAAUVGRurQoUO6dOmS4uPjbUY+vnTpkiQpOjpax48ft7nXyIiePXuqRIkSOnv2rCIiIvTXX3+pdu3aadJ99tln5jU5dWTsm5UrV07//vuvJOmTTz4x+27Mbtl1X4WcQ8AOt7WbgxPWHYFnh9QAlaR0O0i/WatWrcyAXerAAOmpXr260wETrDsur1OnjtPlFylSxHzvSielrgxMkZoudXtYbxdriYmJmjFjhj744AOdOHHCpXztDXFuz5133ulSOme8vLzUs2dPffHFF0pMTFTHjh310EMP6cEHH1Tbtm0VHBzsUj6Z3TdSA3bO9o1ChQo5vaGwWCwqXLiw4uLiJKX8vzMbsLNenxo1aqho0aJO57EOdJ4+fVonT55U6dKlM7X8292gQYO0cOFCSSk3cqkBuyVLlkhKedjwwAMP5GqZXDn2PT091aRJE/NH5c6dO+0G7OLi4vTGG2/ok08+cfmYtpeuXLlyat68uSIiInTp0iXdeeedeuSRR9SrVy+1atXKaQfrqbZs2WK+Dw0N1dGjR53OY31zf/z4cZtpf/75pxlYDQwMdOlc7Oq5NSNy8hzryg9E6/OCveuL9XnElfUPDAxU3bp1nZ4Pc9qff/6pq1evSkrp+Pvpp592ab7UQSCktPuMtQYNGujNN980g1HWHfs/8cQTdgN92a1ChQp2f/zeuHFDZ8+e1datWzV9+nRt2rRJ+/fvV4cOHbRq1SqnDxXTY70vNG3a1KVBkayvKTt37pRhGA6D7a7sY3fccYcCAgJ05coVJSUl6c8//8zysenh4aH+/furf//+On78uDZs2KCIiAj98ccf2r17t65fv26mNQxD8+fP1+HDh/Xzzz+n2Q7W56pvvvlGYWFhTpefGnyQHO93UvYc17nJOsBmj/U9caFChVSmTBmH6Z3dE1tv/7i4OJcDT6mDb0kp/wNHAbtb6X9gPdhEp06d0n2QYB2wi4yMTDdwdbMaNWo4/d2TkW2xZs0avfzyy+n+LrHn/PnzmQ7YFSxYUEOGDNHbb78tKeVhy3vvvZcm3fz58833Nw82kapv375mxZAXX3xRv/zyiwYMGKBOnTrZDfBlVnbdVyHnELDDbS0oKEgFChQwa3BcvHgxW/M/d+6c+b5ChQouzVOxYkXzvbMfSs5qt0iyubnLaPr0alxYK1++vNM0N6ez3i6p4uPj1b17d61bt86l/FLdXEsyPdajkGbVBx98oD/++EP//vuvEhIStGTJEi1ZskQeHh6qU6eO2rRpo06dOqlr167y9va2m4c77BuSbG58XPl/pycz61OyZEmztqKUsk4E7Oxr166dKlSooKNHj2rFihX64IMPtGfPHnPEwQceeCBDtT5iYmL0yiuvOEzTvHlzDRw4MN3p2XXsX7hwQR07dnS5Jleq9I79+fPnq2PHjjpz5oyuXLmi2bNna/bs2SpQoIAaNGigtm3bqkuXLrrrrrvk6elpN4/UUSclmbVAM+LChQs2n63Xu1y5ci7V2HN1+7oqp8+xrpxznJ1vrLdTRvavvA7YWe8v0dHRNqPCu+rmfeZmzzzzjH766SezJp+UMgJnau2vvFKwYEGVKVNGDzzwgHr16qVhw4Zp4cKFSkxM1ODBg3XgwAGboIersnqNTEhI0OXLlxUUFJRuelf2MYvForJly5qja9o7h2VFuXLl9Mgjj+iRRx6RlHKchoWFae7cufr222/NBwHr16/XjBkz0tSGs973VqxYkeHlO9vvsuO4zk3Oypvd98TW2//w4cM5cuzfKv+D+Ph4m30wdZ+2p3r16mrWrJm2bt0qKSXQ99ZbbzldRka3hXUN/ZtNnjzZZuRTV7l6TUzPiBEj9M4778gwDC1ZskTTpk2zKfOWLVvM0YZLliyZbo3C4cOH66efftKqVaskSb/99pt+++03SSnntjZt2qhDhw7q0aOHihUrlqUyZ8d9FXKOR14XAMhp1jeCqUO+ZxfrGnuu/pi2TufsouDKj76spHeFq09WnK3XlClTzB+SFotFDz30kL788kvt379fly5dUkJCgoyUfjVtarJYv3fE19fXpXSuKFWqlCIjIzVx4kSVLFnS/D45OVl79uzRrFmz1KtXL4WEhGjatGl2hzh3t30jqzKzPjenzepN0O3MYrGYN7/R0dFas2aNPvvsM3P64MGDM5RfbGysPv74Y4evX3/91WEe2XXsjxo1ygzWeXl5afjw4fruu+904MABs0ls6nFv3SQptcbazWrXrq3du3dr9OjRNjf3iYmJioyM1Pvvv68uXbqoQoUKmjdvnt08rGugZMbNx7z18ZGZ7ZYdcvocmx3nHHfYTpmR1f1FcvzDUkrZviVKlLD5rnPnztl6bcsqi8Wi999/3/zfRUdHa8GCBZnKK6vXSMn5NSW7zmHZydvbW507d9bXX3+tb775xiZg9OGHH6ZJn9V9z5X97laSkfJmx7rl1rF/K/j+++/N4GNAQIB69uzpML11QG/p0qV275Vvll3b4pdffrEJ1rVo0UJz587Vzp07df78eV2/ft3metiuXTszbXr3Hq6qWrWqOnToICnlAcD3339vM926dt2gQYPSrVHo6empb7/9VvPmzUtTO/HYsWP6/PPPNXz4cJUuXVrDhw9XTExMpsucHfdVyDkE7HDbs+5jJfVJT3ax7hMvtbmMM9bpMts8MTddu3bNpXSO1is+Pt5s6ilJixYt0hdffKE+ffqoZs2aCgoKsrlguUNgJygoSK+++qqioqIUERGhd955Rz179rR5inXhwgVNmDBBvXv3TvOj93bbNzKzPjendbd1cjfW/S3Nnz9fy5cvl5RSQyP15i83ZcexHxUVpS+++EJSSjOxn376SZ9++qm6d++uatWqKSAgwOZpravHfsmSJTVjxgydOXNGGzZs0KuvvqquXbva1LaJiorSiBEjNGbMmDTzW/9AT63lktGXNevjIzPbLatulXNsXm+nzLLeX+rVq5ep/WXy5MkOl7Fs2TJ9/vnnNt/NnDnT7HPWXQQHB5tN9iWZNT4yKqvXSMn5NSU7zmE5qVevXho6dKj5+dixYzp27JhNGut9b8eOHRne7/K6z7lbnfX27969e6aO/SFDhuTdCmQj6+awV65ckb+/vywWS7ov6+bDJ0+edPqQMDu988475vuhQ4cqPDxcI0aMUIMGDVS0aNE0rWOy+5o4YsQI8711gO7KlSs2tRTTaw6bymKxaNiwYdq3b5/++ecfzZ07V4MHD1blypXNNDdu3ND8+fPVtGnTLNUQzup9FXIOATvc9qw73z169Gi2dvJt3Qzz5pus9FjfPGW1CnNucHW9rPtJuXm9tm3bZj5Nr1OnjtOOoF3pTyq3eHp6qlmzZnr++ee1cuVKnTlzRps2bbLpU+i7777TN998YzPf7bZvZGZ9zp49a9NXj7utk7upVq2amjdvLiml35XUG6+BAwdm+KlzxYoVnf6IWLRokcM8suPYX79+vRnc6tq1q9PAY0aPfW9vb7Vr104TJ07Ujz/+qPPnz2vt2rU2D2pmzpxp05eYJJuas6kdeWeF9fFx4sQJl2qtOetbKiNulXNsZs4j2bmdMiu795ebHT16VE8++aT5uWbNmpJSano88sgj2VLLJzuFhISY7zO7L2X1Gunl5eU0uOZKvoZhKCoqyvyc29epm/v8PHXqlM3nnN734BjbP8WZM2f0888/ZykP64BfTkpKSjL7evTw8NCbb77p9B7K1XOQqx544AHzXPLzzz+bfcp++eWX5rW6TZs2GRrcoXr16hoxYoQWLVqkQ4cO6Z9//tGzzz5rPvQ8dOhQppoA3yyz91XIOQTscNvr06ePzQ1YdvYHYz1SkauBQOt0zkbmcgfpjXB2M+uOeW9eL+s+QFzpXHfjxo0uli73eXh4qHXr1lq1apU6depkfn9zlffbbd+wXp+///7bpar34eHh5vtSpUrRf50L7AVacnt02FSuHPtJSUk2N215fewXLFhQ99xzj3799VebzslTB/pJZV1DyHo/zax69erJwyPllio2Ntal7hesz5lZdaucY63PI67sX1euXNHevXtzskguadCggVkj4+zZszp48GC25Z2UlKSBAweaQbmOHTsqMjJStWrVkpQSEHviiSec5pObzeqsa66l7vcZZb0vbNu2zaXmctbXyIYNGzpdZ1f2sb1795q1azw9PV0aBTQ73Twy7M01f7L7XJVTbpVmnRllvf137drlFjV+05OT/4PPP//cbNrr7++vZs2aufSyHmxj1apVuTJgxvnz582RxUuUKJGmq4Gb/fXXXy4PvuQqLy8vsyuT5ORk8wGpdW27YcOGZWkZ1atX13vvvWcTpLv5t0h2cPW+CjmHgB1ue76+vjZVd7/55ps0taFccfXq1TSBF+vaez/++KPOnj3rMI+TJ0/adHBuPb+7Cg8PtzvUvbV9+/bZdArevn17m+nWN/TOmqgkJydr7ty5GS9oLrNYLDYdxZ45c8ZmuvX/dufOnfrzzz8d5nft2jWz6eDN87uDWrVqmaOBJSUlaenSpU7nsb4xyYsmnbeifv36ycvLy/zcpEkTs7ZNbvv++++d3lz/9NNP5nnPx8cnzeiKGTn2r127ZtNvX1ak9hOV6ubj87777jPff/vtt2mmZ1RgYKAaN25sfk4d3deR7FpX6dY5x1qfB1asWOG08/QVK1YoPj4+p4vllK+vr805edasWdmW9xtvvKHNmzdLShmx8rPPPpO/v7+WLVtmngu++OILp/uLdeAnpzultx5x0dkonOlp2bKlGZw6d+6c1qxZ4zB9cnKyOZK25No10pXrlPV2bdKkSa73mbh7927zfeoAGNasz1ULFiywqbXuTnJz/8tNlStXNoPnCQkJNvc17iYn/wfWteOGDh2qiIgIl16RkZHmoDRxcXH68ssvs7Vc9lhfD+Pi4pymtx6VOzs99thj5vuFCxfqr7/+Mn9HFipUSH369MmW5Vi3+MnqvYwjzu6rkHMI2CFfeOGFF2xqfjzyyCMZejKwd+9eNW/ePM3oe507d1alSpUkpfQhNHbs2HTzMAxDo0ePNi+iVapU0d13352BtcgbhmHo6aefTreJV1JSkk1AtHXr1mkCDNZ9LYSFhTls3vPOO+/Y3MDmtsuXL5tP5pyxbqp18xO8mjVrqm3btubnp556yuEN1MSJE83AR1BQkB5++OGMFDvHWSwWm5uPqVOn2jQjutn3339v8wPMlRoikAoXLqydO3dq+/bt2r59e6YeLmSX2NhYvfTSS+lOv3r1ql544QXz84MPPphmhDfrY//HH390WIvmueeec3oDeOHCBZc7hHZ0fDZt2tR8sBAXF6dHHnnE5eM+ISHB7qh/1n3RzJgxQwcOHEg3jy+++MIM0mSHW+Uc+/DDD5sDARw/ftzhqIHR0dFORzrOTePHjzffz5w5M0P9MaXXlC4iIkJTp041P8+dO9cMgDVo0ECvv/66Oe2pp55y+PCsaNGi5ntH5+as+vbbb22awd51112Zyic4OFgPPfSQ+XncuHEO+5H66KOPtGfPHkkpP8itr0fp2bBhg77++ut0p+/fv18fffSR+dlZf1LOTJo0SZGRkS6nP3v2rM1AE40bN07TJLd3796qWrWqpJTmsk8++aTLA8VcuXIl12qEBQcHm4GSc+fO3VZBO+tjf+LEieZ+6IrcbEabU+eAXbt22Tx0djS6/M0KFiyovn37mp9zo1ls0aJFzXuRS5cumc1j7QkPD8+xgF316tXNwSz+++8/m/4q+/fv73RQHFdr/Tm613FFdt1XIQcZQD5x6NAho0SJEoYkQ5Lh4eFhPPLII8Zff/1lN31ycrKxbds2Y9CgQYaHh4chyZg0aVKadCtWrDDzlGQMHz7cuHz5sk2a2NhYY/DgwTbpvvnmG7vLDQ0NNdO0a9fO6XotXLjQTD948GCn6SdNmmSmt7c+hmHYlNXLy8uQZAwaNMiIjY21SRcTE2P06dPHTGuxWIxNmzalyS8pKckoU6aMma5Tp05GVFSUTZrr168bL7/8siHJ8Pf3t9lW6XElzc0OHz5szlOhQoU000NDQ42QkBBj0qRJxr59++zmkZiYaHzxxReGj4+Pmdfnn3+eJl14eLjh6elpprn//vuNM2fO2KSJj483XnzxRZt1ee+99zJVdnsqVKhgznP48GGX5klPTEyMzf+xRo0axs6dO9OkW758ueHn52ez3unJ6P7uKut8s3qpa9eundNjJqNlKlmyZJbKtH///mxbP2vW65p67I8fP96Ij4+3SXfixAmbtL6+vsa///6bJr+YmBibfWHAgAHGhQsXbNJcunTJGDFiRJpj394+vnDhQqNKlSrGO++8k+7+fP36dWPmzJmGxWIx8woPD0+Tbs+ePUZAQICZplmzZkZERES62+aff/4xpk6daoSEhBg//PCD3eXWqFHDzK98+fJ281u6dKnh4+Njbt/s+B+6yznWep8IDQ21m2by5Mk214xp06YZiYmJNmkOHDhgNGzY0GY/lGQsXLjQpXJklPV10dF56OZr4xtvvJHmep8qLi7OWLlypdG9e3ejSZMmaabHxsYaVapUMfMbOnRomjTJycnGXXfdZaZp0aJFmm2VasuWLWa6kJAQ4+LFi07X2/r+wdk1JTk52VixYoURFBRkzhMcHGycO3fObnrrbZXe/+3gwYM2x2CLFi2MQ4cO2aRJSkoypk+fbnMtHT16dLrltN5nvby8DF9fX2PZsmVp0v3+++9GuXLlzLR16tRJc57LqGbNmhmSjA4dOhiLFy9Oc65LlZycbPz8889G1apVbcr77bff2k3/yy+/2Kx/165d0713NQzD2Llzp/HCCy8YwcHBxp49e9JMz+h9o6v3Htbnvy+//DLb8s3IeSij90mu3IMkJiYaHTt2NNMFBQUZn3zySbr7y6VLl4ylS5ca7dq1Mx588EG7aTJ6b+bK8bR8+XIzTYMGDbK8P6caO3asmW/VqlUzPP+mTZts/ocHDx60mZ6Z+0Bn+0T//v3N6RUrVjS2bt2aJo31+cz6mpjetcuV/8HNli5dalPW1FdkZKTTeX19fY3HHnvM2LBhg5GUlGQ3zfbt243KlSub+Y4YMSJNGmfbNzvvq5Az/m8sceA2V7lyZW3dulX333+/9u7dq+TkZC1ZskRLlixRxYoVVa9ePRUrVkxJSUk6ffq0du3alaa2h70Ojvv27auNGzfq448/liTNmzdPK1asUIcOHVSyZEmdPXtWv/32m9nJqCSNHTtWDzzwQM6ucDaZMGGCPvzwQ3322WdauXKlOnbsqBIlSuj06dNav369zdPbCRMm2HRKmsrDw0Ovvvqq+XTpl19+UfXq1dWyZUtVqFBB0dHR2rBhg1lrZe7cuRowYEDurKAdp06d0pQpUzRlyhSVKlVKDRo0UKlSpVSgQAGdOXNGf/zxh02fUW3atFG/fv3S5NOyZUtNmzZN48aNk5TS30P58uXVoUMHlStXThcuXFBoaKiio6PNeXr16qVnnnkm51cyEwoXLqxly5apa9euunbtmv755x81atRIzZo1U+3atZWQkKCIiAib/p2qVavmFk1IGjRo4HLa0qVL68cff7Q77ZNPPtGqVatczmvq1Kk2zRVuJa+99pr+97//6a233tL8+fPVvn17FS5cWEePHtWGDRtsaqRNnz7drAVirXDhwnr++efNWkSff/651q5dq2bNmqlMmTI6deqUNmzYoKtXr6pAgQKaNWuW2e9Leg4dOqRx48Zp3LhxKl++vOrVq2c+6T19+rQiIiJs+lgcMGCAWrZsmSafunXravny5XrooYd07do1bd26Vc2bN1eVKlXUqFEjFSlSRNevX9fZs2f1559/Oq2x4O3trSVLlqhDhw66evWqjh07pubNm6tp06aqW7dumuNjxowZ2TbS2q10jp0wYYJ++eUXhYeHyzAMvfjii/rwww/Vrl07BQQE6ODBg9q0aZOSkpLUrFkzValSRcuWLcuTst5szpw5OnXqlNatW6eEhAS99NJLeu2119SsWTOVL19e3t7eunjxog4dOqS9e/eazXnvvPPONHmNHj1ahw4dkiRVrVpVM2bMSJPGYrFo8eLFqlevnmJiYrRlyxa9+uqrdkecbdq0qcqVK6fjx4/r1KlTqlmzpjp37qxixYqZfVs1adLEplabtZiYGJtRHVPduHFD586d07Zt22yOAU9PT82bNy9LgzRUqVJF8+bN04ABA5SUlKQtW7aoRo0aatOmjapUqaIrV65o06ZNNstt3ry53n77bZfyf/vttzV27Fg9/PDDmjRpkpo1a6aCBQtq7969Nn1vBgQEaPHixTbdEWRFaGioQkNDZbFYVKtWLdWoUcOs/WTvHkJK2R969eplN7+7775bs2fP1siRI5WUlKS1a9fqp59+Uu3atVWvXj0FBQXp2rVrOnXqlHbv3p2lkSKzonfv3nrjjTckpZx3Fy1apKpVq9qMUP3uu+/mSdmywtPTU19++aU6deqknTt3KjY2Vk888YReeOEFtWjRQmXKlJGnp6cuXLigf/75R/v37zf7e+vdu3eulbNr167y9fVVXFycdu3apVq1aql9+/YKDg42zwGdO3e2adboTGJios35NzPXjVatWqlixYrmoDGfffZZtgyO4MjEiRO1atUqxcXF6ciRI2revLlatGih6tWrKyEhQVu2bDFrLI8YMUIHDhxwWBMvsx588EGNGTPG5p6kQYMGdq8JN4uLi9PcuXM1d+5cBQYGqkGDBqpQoYL8/f11/vx5/f3339q3b5+Zvnjx4k5HI09Pdt1XIYfkdcQQyG2XL182pk6dagQHB9t96mHvVb9+fWPlypUO83311VcNb29vh/n4+PgYb7zxhsN83K2G3cKFC43w8HAjJCQk3fXy9PQ0/ve//zld9ksvveR0+3zyySeGYbj2RNWVNDdz9vQ1IiLCKFCggMv7xoMPPpim5uHN5s2bZ1MrIb1t+PTTT6dbe8KVstuTnTXsUm3ZssXmiV56r7vvvts4e/asw7xyq4ZdRl43b1vrWkMZfVk/hb3VatiFhoYaq1atcrjv+vj4GLNmzXKYZ2JiojFo0CCH2yk4ONhYuXKl0338q6++snnC6+jl4eFhPPnkk0ZCQoLD8u3atcu48847Xf6fVqxY0W7N0lRhYWFGqVKlHJYr9dyb3f/DvD7HulLDzjBSaqDcc889DsvasmVL4+TJk5mq1ZBRrtawM4yU/fnll1+2qTnq6FWwYEFj1KhRNnlY18wvUKCAsW3bNofL/Oabb8z0np6exu+//2433Q8//JCm5qb16+Z7BOv7h4y8ypUrZ/z0008Oy5yR/9sPP/xglCxZ0uly+/fvb1y9etVhXjfvsy+//LLDc0bp0qWNzZs3O8zTVVOnTnV47Nt7FS5c2Ok5NNX69euNatWquZx3nTp10tS0NYycq2F38eJFo2bNmg7LlJl8M3IeyokadqmuXbtmPPHEEy7fI/r6+qZ7z58TNewMwzBmz57tcH/PaCuB77//3mZ+ezXpXWF9bapYsaKRnJxsTsuJGnaGYRirVq1yep5+7LHHjOvXr7t07crstci6hqIk46OPPnJpPuvax85e9evXN/bv3283H2fbNyfuq5C9qGGHfCcgIEAvv/yyxowZox9//FG//PKL/vjjD509e1YxMTHy8vJSkSJFVLNmTTVr1kw9e/Z0acTOiRMn6pFHHtG8efP0888/6/Dhw7p48aKCg4NVuXJldenSRcOHD1f58uVzYS2zV8uWLbV7927NnTtXK1eu1JEjR3TlyhWVLl1aHTt21JNPPunSNnr99dfVtWtXffTRR9q8ebPOnTunwMBAlS1bVvfcc4+GDRumatWq5cIapa9Zs2Y6e/asfv31V23evFk7d+7UoUOHFB0draSkJAUFBalKlSpq3ry5Bg4cqKZNmzrNc9iwYerRo4c+/fRTrV27VgcOHFBMTIwCAwNVrlw53X333Ro6dKhq166dC2uYdc2bN9f+/fu1dOlSrVq1Srt27dLZs2dVsGBBlSpVSq1bt1b//v0z9BQX7qlHjx76888/9cknn2jNmjU6duyYEhISVK5cOd1zzz166qmnnB6znp6eWrx4sfr06aO5c+dq69atunDhggoXLqzy5curR48eGjp0qEqXLm0+gU/Pgw8+aNZwCg8P1+7du/Xff//p4sWLklI6cq5evbpat26tQYMGuXRM1a9fX5GRkVq3bp1WrVql8PBwnTx5UhcvXpS3t7eKFy+uGjVqqFmzZurSpYtatGjhcDS+tm3bav/+/fr444/17bff6tChQ7px44ZKly6ttm3b6vHHH3fpvJEZt8I5Vkrpp3Pt2rX69ttvtWjRIm3fvl0xMTEqVqyYatWqpQEDBmjgwIE2NXPchaenp6ZOnarRo0frs88+06+//mqOMnjjxg0FBQWpQoUKuuOOO9ShQwd169ZNxYsXN+c/fvy4Hn/8cfPz5MmT1aRJE4fLfOCBBzR8+HDNmzdPSUlJGjBggHbt2qWgoCCbdPfdd58iIyP18ccfa/PmzTp27JiuXLnicp9n9nh4eCgoKEghISFq1KiR7r33Xj3wwANpRjPNivvuu08HDx7UggULtHr1au3bt0/nz5+Xr6+vSpcurQ4dOmjQoEE2I3a6aurUqerWrZvmzp2rTZs26eTJkypYsKCqVq2qBx54QKNGjUrT92Zmvfzyy5o4caIiIyO1ceNGbdu2Tf/8849OnDih2NhYWSwWBQUFqWzZsqpXr546d+6snj17ujzQRYcOHbR//36tWrVKa9asUUREhE6fPq3Y2Fj5+fmpZMmSqlmzplq2bKmuXbtmqGZ5dihUqJC2b9+uWbNmac2aNdq/f78uXrx42/Rn5+vrq9mzZ2v8+PFaunSp1q9frwMHDig6OlrJyckqVKiQKleurPr16+uuu+7SPffck+YYzWlPPPGE7rjjDs2ZM0dbt25VVFSUrl27lulzgHWfc02bNrVbk94VAwYMMGtfHjlyRGFhYWkGqMtuPXr00N69e/X+++9r3bp1OnbsmAoUKKDSpUurVatWGjJkiE1f0znlgQce0PTp0yWl7EOu1lKMjo7Wxo0bFRYWpu3bt+vff//VmTNndP36dfn5+als2bK688471bt3b3Xv3j3TI3bnxH0VspfFyMpVHMBtaciQIeZFeuHChRoyZEjeFggAAAAAbiFTpkwxm6oOHDjQpVHkAWuMEgsAAAAAAJBNDMPQokWLzM8jRozIu8LglkXADgAAAAAAIJt89913ZlcftWvXzpUmuLj9ELADAAAAAADIBjExMXrhhRfMz2PHjs27wuCWxqATAAAAAAAAmTR16lTFxMTo/PnzWrt2rWJiYiRJNWrUoD9wZBoBOwAAAAAAgExasGCBjh49avOdn5+flixZ4pajnuPWQJNYAAAAAACALLJYLCpevLj69u2rbdu2qUmTJnldJNzCLIZhGHldCAAAAAAAAAApqGEHAAAAAAAAuBECdgAAAAAAAIAbIWAHAAAAAAAAuBECdgAAAAAAAIAbIWAHAAAAAAAAuBECdgAAAAAAAIAbKZDXBUDWXL9+XXv27JEkFS9eXAUK8C8FAAAAAADIDYmJiTp37pwk6Y477pCPj0+25Et05xa3Z88eNW3aNK+LAQAAAAAAkK9t27ZNTZo0yZa8aBILAAAAAAAAuBFq2N3iihcvbr7ftm2bQkJC8rA0AAAAAAAA+cepU6fMlo/WMZqsImB3i7Pusy4kJERly5bNw9IAAAAAAADkT9k5rgBNYgEAAAAAAAA3QsAOAAAAAAAAcCME7AAAAAAAAAA3QsAOAAAAAAAAcCME7AAAAAAAAAA3QsAOAAAAAAAAcCME7AAAAAAAAAA3QsAOAAAAAAAAcCME7AAAAAAAAAA3QsDu/zt27JgmTZqkxo0bq3jx4vLx8VG5cuXUpk0bvfLKK9q7d6/D+deuXatevXqpbNmy8vb2VtmyZdWrVy+tXbs2l9YAAAAAAAAAt4MCeV0AdzBz5kxNmDBBV69etfn+xIkTOnHihDZv3qzY2FhNnz49zbzJycl67LHHNH/+fJvvo6KiFBUVpVWrVmn48OGaM2eOPDyIjwIAAACAI9evX9fFixd17do1JSUl5XVxANzmPD095efnp+DgYPn4+OR1cUz5PmD32muv6eWXX5YkVa9eXSNGjFCTJk1UqFAhRUdHa+fOnVq5cmW6wbb//e9/ZrCuYcOGeuGFF1SlShUdOnRIb7/9tnbu3Kl58+apePHieuONN3JtvQAAAADgVmIYhk6dOqVLly7ldVEA5COJiYmKj4/XhQsXVKhQIYWEhMhiseR1sWQxDMPI60Lkld9++0133323JGnQoEGaN2+eChYsaDdtQkKCvLy8bL47cOCA6tSpo8TERDVu3FgbN26Ur6+vOf3atWtq166dIiMjVaBAAe3fv19Vq1bN1nU4ceKEypUrJ0k6fvy4ypYtm635AwAAAEBuOH/+vM6dO2fzXYEC+b6OCYAclpiYaPO5ePHiKlasmMvz51RcJt+e/ZKTkzVy5EhJUv369TV//nyHF4Obg3WSNH36dPMfO3PmTJtgnST5+flp5syZatGihRITE/XBBx/o448/zsa1AAAAAIBbX0JCgk2wrkSJEgoODpanp2celgpAfpCUlKSLFy/q7NmzkqRz584pKCjIbhwoN+XbTtXWrVunf//9V5I0fvz4DD+5MQxD3333nSSpZs2aat68ud10zZs3V40aNSRJ3333nfJxhUYAAAAAsOvKlSvm+6JFi6po0aIE6wDkCk9PT/O8k8r6nJRX8m3A7quvvpIkWSwW3Xfffeb3MTEx+vfffxUTE+Nw/sOHD+vkyZOSpHbt2jlMmzo9KipKR44cyUKpAQAAAOD2Yz0AYFBQUB6WBEB+ZX3uuXlQ0ryQb5vERkRESJIqVqyowMBALVu2TG+++ab27t1rpkkdhGL06NHy9va2mf+vv/4y39esWdPhsqyn79+/X5UqVXK5nCdOnHA4/dSpUy7nBQAAAADuKCEhQVJKhYqbf3sBQG7w9vaWxWKRYRjmOSkv5cuAXXJysv7++29JUrFixfT0009rxowZadIdOHBA48aN08qVK7VmzRoFBweb06wDac46FEztfFBK6YAwI6znBQAAAIDbUXJysqSUpmnuMDojgPzHYrHI09NTiYmJ5jkpL+XLJrGXLl0yN/6ePXs0Y8YMhYSEaOnSpYqJidG1a9cUFhZm9kv3+++/a+jQoTZ5XL582XwfEBDgcHn+/v7me3doBw0AAAAAAAD3lS9r2Fm3Rb5+/br8/PwUGhpqDg4hSW3bttX69evVokUL7d69WytXrtTWrVvVrFkzc75UzkYOsa7SHRcXl6GyOquRd+rUKTVt2jRDeQIAAAAAAMB95cuAnY+Pj83n4cOH2wTrUvn6+ur11183B6VYsWKFGbCzzsNZ2+b4+HibPDPCWXNbAAAAAAAA3F7yZZPYwMBAm8+dO3dON+1dd92lAgVS4prbt2+3m4ezZq7WNfqcNZ8FAAAAAABA/pYvA3be3t4qXry4+dnRwA4+Pj4qVqyYJOncuXPm99Y135yN5GrdrJVBJAAAAAAAAOBIvgzYSVKdOnXM90lJSQ7Tpk5PrWknSbVr1zbfp444mx7r6bVq1cpQOQEAAAAAyKpFixbJYrHIYrHoyJEjObKMihUrymKxaMiQITmSP6QjR46Y/8dFixbldXGQg/JtwK5t27bm+//++y/ddLGxsTp//rwkqUyZMub3lSpVUunSpSVJYWFhDpe1ceNGc/6KFStmtsgAAAAAANkGLbLycnfWQbabXx4eHgoKClLdunX1+OOP648//sjr4ua6Gzdu6PPPP1evXr1UsWJF+fn5qWDBgipatKgaNGigAQMGaObMmTpw4EBeFxXIsHwbsOvdu7f5fuXKlemmW7lypQzDkCS1adPG/N5isahHjx6SUmrQRURE2J0/IiLCrGHXo0ePW+KiAAAAAADIGdlV080wDF2+fFn79u3T3Llz1aRJE7300kvZV1A3988//6hRo0YaOHCgVq1apaNHjyouLk6JiYmKiYnR7t27tWzZMo0ZM0Y1atTQ9evX87rIDqXuE5MnT87rotyShgwZIovFcltVksqXo8RKUr169dS1a1etXbtWy5cv16OPPqq77rrLJs3p06c1ceJESZKXl5ceffRRm+ljx47V3LlzlZSUpNGjR2vjxo02o8DGxcVp9OjRklKa044dOzZnVwoAAAAA8oEyZcpoz5496U6/4447JEmNGzfWwoULc6tYOeq1114zK41IUnJyss6dO6cNGzZo+vTpunLlit58801VrlxZw4cPz8OS5rzo6Gh17NhRJ0+elCS1a9dOAwcOVO3ateXn56cLFy5o7969Cg0N1U8//aS4uLg8LnH2qVixolmpCLe3fBuwk6Tp06dry5Ytunjxou677z6NHTtW3bp1k6+vr7Zt26Y333zTHFDi1VdftWkSK0nVq1fXuHHjNG3aNEVGRqpVq1YaP368qlSpokOHDumtt97Szp07JUnjxo1TtWrVcn0dAQAAAOB2U7BgQdWtW9dpOn9/f5fS3QrKlCljd13uuusutW/fXp06dZJhGHrnnXdu+4DdtGnTzGDdpEmT7NZK69Chg0aPHq3Lly9r4cKF8vT0zOVSAlmTrwN21atX1w8//KAHH3xQZ86c0bRp0zRt2jSbNBaLRf/73//0wgsv2M3j9ddf19mzZ7VgwQLt3LlT/fr1S5Nm2LBheu2113JkHQAAAAAA+dtdd92lRo0a6Y8//tCBAwcUGxuroKCgvC5Wjvnuu+8kSSVLltQrr7ziMG1gYKDGjBmTG8UCslW+DthJUuvWrbVv3z7NnDlTq1at0uHDh5WQkKCQkBC1b99eo0ePVsOGDdOd38PDQ/Pnz1fv3r01d+5cbd++XefPn1exYsXUpEkTPf744+ratWsurhFy1eRCeV0CIPdMvpTXJQAAAMg2O3bs0Ny5cxUaGqqoqCgZhqGyZcuqY8eOeuaZZ1S9enWb9IZh6J577tG6devk6empTZs2qUWLFnbznjFjhp5++mlJ0iuvvKIpU6Zow4YN6tChg026SpUqpZk3NDRU7du3z/D6VKpUyRx4Ij4+PsPzpzp37pw+/PBDrVmzRocPH9b169dVqlQptWnTRo8//rhat27tcl7bt2/X+++/r82bN+vcuXMqXry47r77bo0fP141a9bMdBmPHTsmKWWdPTyy3jV/UlKSli5dqq+++ko7duxQdHS0AgICVKtWLT3wwAMaOXKkTfdX1tq3b6+wsDC1a9dOGzZsUFRUlN577z19//33ioqKkp+fnxo3bqyxY8fajQ1UrFhRR48eNT9PmTJFU6ZMsUkzePBgc0TYI0eOmPvNwoUL04zIO3nyZHN+wzAUGxur999/X998840OHz5slmfixIlq2bKlOd/Zs2c1Y8YMrVy5UkeOHJGPj49at26tyZMnO4yJpMro8ZRq0aJFZvdjhw8fVvny5TVv3jwtWrRI+/fvV0JCgqpUqaKHHnpIzzzzjPz8/NJdX0k6evSo3bEDbsVmxPk+YCdJRYsW1eTJk7PUuWO3bt3UrVu37CsUAAAAACDbJScn6/nnn9f06dPT/Ig/cOCADhw4oHnz5unjjz/WY489Zk6zWCxatGiR7rjjDkVHR2vgwIHatWuXAgMDbfLYt2+fxo8fL0lq1qyZXn755ZxfKckM+vj6+qp48eKZymPdunXq06ePYmNj0+R99OhRLV26VKNGjdKMGTOcBsoWLFigxx9/XImJieZ3J06c0KJFi7R8+XItWbJEffr0yVQ5vby8FB8fr4MHDyoxMVEFCmQ+tHHs2DF1795du3fvtvk+JiZG4eHhCg8P1+zZs7VmzZp0g06pwsPD1bNnT50/f9787vr161q3bp3WrVund955R88//3ymy5pRx48f1913320zSu7Vq1e1du1arVu3TsuXL1efPn30559/qlu3boqKijLTXbt2Td9//71+/vlnrV27Nk2wOVVmjyd7rl27ps6dO+u3336z+X7Pnj3as2ePvv/+e61fv17+/v4Z3RS3pHw7SiwAAAAAIP8ZPXq0PvjgAxmGobZt22rBggXasGGDtm3bpk8//VR16tRRYmKiHn/8cX3//fc284aEhGjevHmSpP/++y9NU8v4+Hg9/PDDun79uvz9/bV06VIzmNSkSRPt2bPHprukn3/+2QxGpL6aNGmS4XXasGGDWbuue/fuGZ5fknbt2qX7779fsbGxKliwoJ555hmFhoZq27ZtmjNnjlmr6+OPP9aECROc5vXEE0+oRIkSmjlzprZu3aqwsDCNHz9e3t7eio+P14ABAxQZGZmpsjZq1EiSdP78eY0dO1YJCQmZyic6OlqtW7fW7t275e3traeeekpfffWVtm/frtDQUE2YMEF+fn46ePCgunbtqkuX0m9xcurUKfXs2VMeHh6aNm2aNm/erG3btun9999XcHCwJGnChAnat2+fzXzr1q2zGUBl5MiRafaJ119/PVPr16dPH504cUITJkxQWFiYtm/frg8++EBBQUFKSkrSsGHDdPjwYd13332Ki4vT66+/rs2bN2vr1q2aMmWKGRgdMmRIuts4K8fTzUaMGKHQ0FANHjxYa9as0R9//KGVK1eaNVm3bduWpruxJ598Unv27DEHZCldunSa7edogBp3Rg07AAAAAEC+8Msvv2jWrFmSpHnz5mnYsGE205s0aaKBAwfq3nvv1fr16zVmzBh169bNpgZXz549NXz4cLPZ3r333qsHH3xQkvTSSy/pzz//lJQyyGHVqlXN+VIHwLAOUlWvXl0VK1Z0qexRUVHau3ev+Tk5OVnnz59XWFiYpk+fruTkZJUpUybT/ac/9thjSkhIkKenp1avXq3OnTvbbJc+ffqodevW+uuvv/Tuu+9q0KBBqlOnjt28du/erQoVKigiIkKlSpUyv2/btq26dOmizp0768aNG3ryySe1bdu2DJd19OjRCgsLk5QSQPz666/Vo0cPtWrVSk2bNlWNGjXsNou82ZgxY3T8+HFVqFBBoaGhaZoot2/fXn369FGbNm3033//6e233043eHbgwAFVqFBB4eHhNgNWNmnSRE2aNFHbtm2VmJiouXPn6sMPPzSn31xrr0SJEtk2UMquXbsUFhamZs2amd81btxY1apV03333afLly+rWbNmMgxD27ZtU5UqVcx0TZs2VbFixTRq1CgdO3ZMa9asUa9evWzyz47jydrvv/+uJUuWaODAgeZ3jRo1UteuXdW4cWPt3btXn376qV599VUzjxIlSqhEiRJmUNTVAWluBdSwAwAAAADkC6mDDPbu3TtNcCGVj4+PPvroI0kpTUFDQ0PTpJk+fbqqVasmSXr88ccVFRWlX3/9VR988IGk/wvqZaeJEyfqjjvuMF/169fXXXfdpalTpyo+Pl7jx4/Xtm3bbIKErtq2bZu2b98uKaWWk3WwLlXhwoU1d+5cSSnBwtRATXree+89m2Bdqg4dOmjEiBGSUvq4y0wtu969e2vSpElmUO7MmTOaO3euBg8erFq1aqlIkSLq0aOHli1bphs3btjN48iRI1qxYoUk6aOPPrLbn6AkNWzYUKNGjZIksx+59MycOdMmWJeqdevWZtBs06ZNLq1jdhg7dqxNsC7VvffeqwoVKkhK6bPw1VdftQnWpXr00Ufl4+MjyX65s+t4SvXAAw/YBOtSpdZ+lFJqRf7111/p5nE7IWAHAAAAALjtxcbGasOGDZJk1ohLT61atVSsWDFJ0pYtW9JMt27uGhMTo4cfflhDhgyRYRgKCQnRp59+mu3ldyQ+Pl6LFy/WggULlJycnOH5f/31V/N9eoEXSWrVqpVq1aqVZp6bFS5c2GyiaM/QoUPtLjsjJk+erK1bt+rBBx80g0qpLl68qO+//14DBgxQnTp17AYF16xZo6SkJPn5+TkdKLJt27aSpJMnT5oDXtwsODhY9957b7p53HnnnZJSmlLnln79+qU7rV69epJS+mZ86KGH7Kbx9fU1A9M3lzs7j6dUAwYMSHda6vazV5bbFQE7AAAAAMBtb+fOnWYwq3///rJYLA5fqQMHnD592m5+TZs21aRJkyRJGzduVFRUlCwWixYuXGgGJ7LTwoULZRiGzevy5cvatm2bhg8frtOnT+vll1/WQw89lOGgXWpTWy8vLzVo0MBh2tQaW//++2+6/Zo1bNjQ4UAQDRo0kJeXlyRlqX+xJk2a6KuvvlJMTIzWr1+vN998Uw8++KDNoBv//vuv2rdvb9OcWJIZxLt27ZoKFCjgcF+47777zPnS2x+qVavmcCCOIkWKSJIuX76c6fXNKEeDZKQ2IS1WrJgKFy7sNN3N5c7u40mSw5GDU7efvbLcrgjYAQAAAABue2fPns3UfNeuXUt32oQJE1S5cmXz8/Dhw9WlS5dMLSczAgIC1KRJE3366ad66aWXJElff/21FixYkKF8YmJiJKUERZyNuJrazNUwDF24cMFumhIlSjjMo0CBAmYAJnXZWeHr66sOHTroxRdf1FdffaVTp05p5cqVKleunKSUkVHHjh1rM0927w9+fn4O50sN5mWmBmRmOSpTanlcLXdSUpLN9zlxPLlSXntluV0x6AQAAAAA4LZn/SN/zpw5atmypUvzOap9tGbNGpvmeZs3b1ZcXJx8fX0zX9BMeu655zRt2jQlJydrwYIFmepDz5WBGnIzn8zy9PRUz549VaVKFTVu3FgJCQlav369YmJizEBh6v5QrFgxh/2q3Sy9vu7ym5w4nmCLgB0AAAAA4LZXtGhR872fn1+WR5I8c+aMGRQLCgpSbGys9u/fr3Hjxpmd7OemIkWKqHjx4jpz5kyGm5mmBrGio6OVmJjosJZdapNGi8WSbvDlzJkzDpeXmJhoU6svp9xxxx1q1qyZNm3aJMMwdOjQIXN5qfvD5cuXVatWLXl6euZYOW5H2X08IS2axAIAAAAAbnsNGjQwa36Fh4dnOb+hQ4fq3Llz8vDw0OrVq9W7d29J0scff6yffvop3flysvZZYmKizV9XpQZbEhIStGvXLodpt23bJimlz7bUfuhutmvXLodl2L17t9n/XU4HekqXLm2+t972DRs2lJQyYEdmRqrN77L7eMqqvK7VmRMI2AEAAAAAbnvFixdX8+bNJUnLli3TuXPnMp3XrFmz9OOPP0qSxo8frzZt2mju3LkqU6aMJOnRRx81O9m/mfWIpvHx8Zkuw82OHDmi6OhoSTL7bnPV3Xffbb531P/dli1b9Ndff6WZ52YxMTH64Ycf0p1uvQxH+aTHMAyX0+3YsUNSSkCnYsWK5rT777/fDPJMnz49w2XIbqn7RXbuEzkpO4+n7HCrbT9XELADAAAAAOQLEydOlCTFxsbqwQcf1MWLF9NNGx8fr48//ljXr1+3+f6ff/7RuHHjJEl33nmnpkyZIimlaeeiRYtksVh0+vRpPfbYY3bzDQkJMd8fOnQoK6tjSk5O1osvvmh+vvfeezM0f9OmTdW4cWNJ0qeffqrffvstTZpLly7p8ccfl5QyAMDIkSMd5vnss8/abRobFhamuXPnSkrZfk2aNMlQWSWpbdu2+vzzz9MdpTbVlClT9O+//0qSWrVqZTN6b40aNdSnTx9J0hdffKH333/fYV6HDx/W8uXLM1xWV6XuF9m1T+SG7Dieskvq9jt79uxtM4osfdgBAAAAAPKFbt266emnn9aHH36ojRs3qlatWnriiSfUunVrFS1aVFevXtXBgwe1adMmffvtt7pw4YIGDx5szn/jxg0NGDBA165dk6+vr5YuXaqCBQua0++++249/fTTmj59ulauXKkFCxZo6NChNmVo2LChfHx8dP36db388ssqWLCgKlSoYI6CWaZMGbuDVkRFRWnv3r023129elV//fWXPv30U23ZskVSSt9i48ePz/C2+fTTT9WsWTMlJCSoW7duGj16tO6//375+/tr586dmjZtmjnAxvPPP++wKWv9+vX1119/6c4779SECRPUtGlTxcfH68cff9QHH3xg9pP38ccfZ7ickrR//34NHDhQY8aMUc+ePdW6dWtVqVJFhQoV0pUrV7Rnzx4tXbrUbKrp5eWld999N00+s2fPVmRkpP777z8999xz+u677zRo0CDVqVNH3t7eio6O1u7du/XTTz9p/fr16tWrl/r375+pMjvTsmVLHT58WN9//73mzJmjVq1ambXGgoKCnI68mxeyejxlp9RBL5KTk/XEE09o9OjRNgHaqlWr5shycxIBOwAAAABAvvHBBx+oSJEievXVV3X69GlNnjw53bT+/v42gxFMmjRJf/zxhyTp3XffVc2aNdPMM23aNP3666/au3evnn76abVv316VK1c2pwcGBmrMmDF6++23tWPHDnXu3Nlm/tDQULVv3z5NvhMnTjRrNKWnUqVK+vrrr1WqVCmH6exp0KCBfvjhB/Xp00exsbF677339N5776VJN2rUKL355ptO83rqqac0cuRIPfXUU2mme3l5afHixWrWrFmGyylJZcuWVXR0tGJiYrRgwQKHzXhDQkK0cOFCu8sqUqSIwsPD1bdvX23atEkbN27Uxo0b080rKCgoU+V1xfPPP6+vv/5a8fHxeuKJJ2ymDR48WIsWLcqxZWdFVo6n7NSxY0c1b95cERERWrZsmZYtW2Yz3dVm1O6EJrEAAAAAgHzDYrHolVde0YEDB/TCCy+ocePGKlKkiDw9PRUYGKjatWtrwIABWrx4sU6dOmXWdtu8ebPeeustSSk1i5588km7+Xt7e+vzzz+Xt7e3rly5ooEDByopKckmzbRp0/Tpp5+qTZs25rIzw8fHR2XLltW9996rOXPmaO/evWrUqFGm8pKkzp076+DBg3rppZfUoEEDBQUFydvbW+XLl9eAAQO0adMmffTRR2ZtQEeGDx+uTZs2qW/fvipdurS8vLxUpkwZDRo0SDt37lS/fv0yXc5du3Zpx44deuutt9SjRw9Vr15dgYGB8vDwUEBAgKpUqaKePXvq008/1T///KMuXbqkm1epUqW0ceNGrV69WgMGDFDlypXl5+enggULqnjx4mrZsqWee+45hYWFOQwMZlWDBg20ZcsW9e/fX+XLl5e3t3eOLSs7ZfZ4ym4eHh5at26dJk6cqPr16ysgIOCWH4jCYtyKYUaYTpw4YXYoevz4cZUtWzaPS5TPTC6U1yUAcs/kS3ldAgAAcJv6999/zWaS1apVy+viAMinMnMuyqm4DDXsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAABwIwTsAAAAAAAAADdCwA4AAAAAAACmIUOGyGKxqGLFinldlHyLgB0AAAAAAHBLGzZskMViMV8PPfSQ03lSg00WiyUXSgjkjAJ5XQAAAAAAAG5HFV9ck9dFyFFHpt2b68v86quvNHHiRN1xxx25vuzslhpQnDRpkiZPnpy3hYHboYYdAAAAAAC4JRiGoUmTJuV1MYAcR8AOAAAAAAC4vWLFikmSVq5cqZ07d+ZxaYCcRcAOAAAAAAC4vTFjxsjb21uS9Morr+RxaYCcRcAOAAAAAAC4vXLlyumxxx6TJK1evVrbtm3LdF5JSUlavHix7rvvPpUuXVre3t4qWrSoWrdurffff19xcXHpzluxYkVZLBYNGTLE4TLSG2k1df5UU6ZMsRlY4+a8rQfe2LBhg5KTk7VgwQJ16NBBJUuWlIeHh0365ORkrV+/Xs8//7xatWqlYsWKqWDBggoODlaDBg30/PPP69ixYxnZXMgDDDoBAAAAAABuCRMmTNC8efMUFxenl19+WT///HOG8zh27Ji6d++u3bt323wfExOj8PBwhYeHa/bs2VqzZo2qV6+eXUXPFtevX1eXLl3066+/pptm6tSpmjJlSprvL126pN27d2v37t2aPXu2li5dql69euVkcZEFBOwAAAAAAMAtISQkRCNHjtT777+vdevWafPmzWrdurXL80dHR6t169Y6fvy4vL29NWLECLVr104VK1bUlStXtG7dOn344Yc6ePCgunbtqh07dqhQoULZug7r1q1TQkKCOdLtyJEj9eSTT9qkKVy4sN15x48frz///FPdu3fXkCFDVKFCBZ05c0axsbFmmsTERIWEhKhXr15q0aKFKleuLB8fHx0/fly///67Zs2apStXrujhhx/Wjh07VKtWrWxdP2QPAnYAAAAAAOCWMX78eM2ZM0dXr17VK6+8ovXr17s875gxY3T8+HFVqFBBoaGhqlSpks309u3bq0+fPmrTpo3+++8/vf3223r99deztfw319orUaKE6tat69K8f/75pyZOnKhXX3013TTDhw/XpEmTVLBgQZvvGzVqpB49emj06NFq3ry5oqKi9MYbb2jJkiUZXwnkOPqwAwAAAAAAt4wSJUroqaeekiSFhoYqNDTUpfmOHDmiFStWSJI++uijNMG6VA0bNtSoUaMkSYsWLcp6gbNR9erVNXnyZIdpKlasmCZYZ61s2bIaN26cJOn777+XYRjZWURkEwJ2AAAAAADgljJu3DgFBgZKkl5++WWX5lmzZo2SkpLk5+enrl27Okzbtm1bSdLJkyfdaoCGhx56SJ6enhmaJzY2VocPH9a+ffu0d+9e7d27V35+fjbT4H5oEgsAAAAAAG4pRYsW1dixY/Xqq68qPDxcP//8s7p06eJwnsjISEnStWvXVKCA6+GQ06dPq3z58lkqb3apV6+eS+mOHj2qd999Vz/88IOOHj3qMO358+dVuXLl7CgeshE17AAAAAAAwC3n2WefVXBwsCRp0qRJTtOfPXs2U8u5du1apubLCekNRmFt7dq1ql27tj766COnwTpJiouLy46iIZtRww4AAAAAANxygoOD9eyzz+qVV17R1q1btXr1at13333ppk9KSpIkFStWzOV+7ySl29ddXnDWHPb8+fN6+OGHde3aNQUEBOj5559Xly5dVKVKFRUqVEheXl6SpPXr1+uuu+6SJPqwc1ME7AAAAAAAwC1p7Nix+vDDDxUdHa1JkyY5DNgVLVpUknT58mXVqlUrw33BpfLwSGmsmJyc7DDd1atXM5V/Vnz99de6ePGiJGnlypW6++677aaLiYnJxVIhM2gSCwAAAAAAbkmBgYHmiKc7duzQypUr003bsGFDSVJ8fLzZn11mlylJFy5ccJjuwIEDmV5GZu3bt0+SVKRIkXSDdZKytP7IHQTsAAAAAADALeupp55SiRIlJKX0ZZdeE8/7779fFotFkjR9+vRMLy+1ieyOHTvSXda+ffv0559/OszHx8dHUkoAMbskJiZKkq5fv55uDcBr165pyZIl2bZM5AwCdgAAAAAA4Jbl7++v8ePHS5L27NmjH3/80W66GjVqqE+fPpKkL774Qu+//77DfA8fPqzly5en+b5du3aSpJMnT9qdfvnyZQ0bNsxpuUNCQiRJhw4dcprWVdWqVZOUEpT78ssv00xPSkrS8OHDdfLkyWxbJnIGATsAAAAAAHBLGzlypBkAO3/+fLrpZs+ercqVK0uSnnvuObVr107z589XRESEdu7cqV9//VXvvfeeOnXqpKpVq+qbb75Jk8fAgQMVFBQkSRo2bJimTp2qrVu3atu2bZo9e7YaNWqk3bt3m01w09OyZUtJ0vfff685c+Zo7969OnjwoA4ePJjpEW379u0rb29vSdKjjz6qF198Ub/99psiIyO1ePFiNWvWTMuXL1erVq0ylT9yD4NOAAAAAACAW5qvr69eeukljR492mG6IkWKKDw8XH379tWmTZu0ceNGbdy4Md30qYE5a8WLF9e8efPUv39/Xb9+XZMmTdKkSZNsyrJkyRKtXr1aO3fuTDfv559/Xl9//bXi4+P1xBNP2EwbPHiwFi1a5HBd7Clbtqxmz56t4cOH6/r163rrrbf01ltv2aR56KGHNGLECId93CHvEbADAAAAACAHHJl2b14XIV8ZMWKE3n77bR0/ftxhulKlSmnjxo1as2aNli9fri1btuj06dO6ceOGgoODVa1aNbVo0ULdu3dX27Zt7ebRp08fVahQQdOmTdPmzZt16dIllSxZUh07dtS4ceNUp04drV692mE5GjRooC1btuidd95ReHi4zpw5ky392T366KOqUaOGme/FixdVrFgx1a9fX48++qj69u2rDRs2ZHk5yFkWI70eEnFLOHHihMqVKydJOn78uMqWLZvHJcpnJhfK6xIAuWfypbwuAQAAuE39+++/SkxMVIECBcw+uAAgt2XmXJRTcRn6sAMAAAAAAADcCAE7AAAAAAAAwI0QsAMAAAAAAADcCAE7AAAAAAAAwI0QsAMAAAAAAADcCAE7AAAAAAAAwI0QsAMAAAAAAADcCAE7AAAAAAAAwI0QsAMAAAAAAADcCAE7AAAAAAAAwI0QsAMAAAAAAADcCAE7AAAAAAAAwI0QsAMAAAAAAADcCAE7AAAAAAAAwI0QsAMAAAAAAADcCAE7AAAAAAAAwI0QsAMAAAAAAADcCAE7AAAAAAAAwI0QsAMAAAAAAMhGGzZskMVikcVi0YYNG7KU15AhQ2SxWFSxYsVsKRtuDQTsAAAAAACAW7IOfN388vPzU4UKFdSzZ08tW7ZMiYmJeV1cINsQsAMAAAAAALecuLg4HTt2TN99950GDBigli1b6vTp03ldLJdMnjzZDDwC9hTI6wIAAAAAAHBbmlwor0uQsyZfytXFjRw5Uk8++aT5+cqVK4qMjNR7772nI0eOaPv27erRo4ciIiLyPBDWvn17GYaRLXktWrRIixYtypa8cOsgYAcAAAAAANxeiRIlVLduXZvvmjdvrgEDBqhp06Y6ePCgtm3bptWrV+v+++/Po1IC2YMmsQAAAAAA4JZVuHBhTZgwwfz8008/5WFpgOxBwA4AAAAAANzSmjZtar4/evSozbRz585p4sSJatiwoYKDg+Xj46OKFSvqkUce0ebNm53mvX79evXv31+VKlWSr6+vOdhF8+bN9fzzz2v9+vVp5klvlNhFixbJYrFoypQp5nf2BtQ4cuSIOT29UWKnTp1qpv/333+drkeXLl1ksVgUEhKipKQku2lWrVqlPn36qHz58vLx8VFwcLAaN26sKVOm6MKFC06XgexDk1gAAAAAAHBLK1iwoPneOhi1bt069enTR7GxsTbpjx49qqNHj2rp0qUaNWqUZsyYIQ+PtHWannnmGU2fPj3N98eOHdOxY8e0detWLVq0SOfPn8++lXHRww8/rEmTJkmSli1bZr6358yZM/rtt98kSf369ZOnp6fN9AsXLujBBx9ME3yMj4/XH3/8oT/++EOzZs3Sd999p+bNm2fzmsAeAnYAAAAAAOCWtmfPHvN96dKlJUm7du3S/fffr4SEBBUsWFBPPfWUunfvLn9/f+3cuVPTpk3T4cOH9fHHH8vf319vvfWWTZ6rV682g3X16tXTyJEjVatWLRUqVEgXL17Uvn379Ouvv2rbtm0ul7Nnz55q3LixZs2apdmzZ6cpe6oyZco4zatq1apq1qyZtm7d6jRgt2LFCjOQOWDAAJtp8fHxuvvuu7Vjxw55enrq4YcfVrdu3VSpUiXduHFDGzdu1Pvvv6+zZ8+qW7du2rlzpypUqODyOiNzCNgBAAAAAIBbVmJiot577z3zc/v27SVJjz32mBISEuTp6anVq1erc+fOZpomTZqoT58+at26tf766y+9++67GjRokOrUqWOm+fLLLyVJFSpUUHh4uAICAmyW2759e40aNUoxMTEulzU4OFjBwcEqUaKE+d3NA2lkxIABA7R161YdOHBAkZGRaty4sd10y5YtkyRVr149TZqpU6dqx44dCg4O1q+//qo777zTZnrr1q01YMAAtWjRQqdOndJLL72kzz//PNNlhmvoww4AAAAAANxyrl69qrCwMHXq1EkRERGSUoJrffv21bZt27R9+3ZJ0ogRI2yCdakKFy6suXPnSpKSk5M1a9Ysm+mnT5+WJDVq1ChNsM5akSJFsmV9MuOhhx4ym7emF0Q7dOiQtm7dKilt7borV67o448/liS9+uqraYJ1qSpUqKCXX35ZkvTVV1/p6tWr2VJ+pC/fBuzsdepo75UamXdk7dq16tWrl8qWLStvb2+VLVtWvXr10tq1a3N+RQAAAAAAyAemTJli83s9ICBA7du3Nwd1KFGihFatWiVvb2/9+uuv5nzDhg1LN89WrVqpVq1akmQzjySFhIRIkjZu3KhDhw5l89pkjxIlSqhTp06SUpq9Jicnp0mTWrtOSun3zlpYWJguXbokSXrwwQcdLqtt27aSpBs3buiPP/7IUrnhXL4N2GWH5ORkDR8+XN26ddOqVasUFRWlhIQERUVFadWqVerWrZtGjBhh94ABAAAAAABZV6lSJY0bN0579uxRgwYNJEl79+6VJHl5eZnfpadZs2aSpH///VcJCQnm94MGDZIkRUdHq27duurXr58WLlyogwcPZv9KZEFqrblTp07ZHbE2NWDXrFkzVa1a1WZaZGSk+T4kJMRhhSbrpruptQ+Rc/J9H3YjR47Uk08+me50f3//dKf973//0/z58yVJDRs21AsvvKAqVaro0KFDevvtt7Vz507NmzdPxYsX1xtvvJHtZQcAAAAAIL+w/v1usVjk4+OjYsWKqVChQmnSpvYrV6RIERUo4Dj0UapUKUmSYRi6cOGCSpYsKUm666679NFHH2ncuHGKi4vTihUrtGLFCkkpg0Lcd999GjlypOrXr59t65gZPXv2lJ+fn65du6bPP/9cd999tzltx44d+vvvvyWlbQ4rSWfPns3UMq9du5a5wsJl+T5gV6JEiUx18HjgwAG9++67kqTGjRtr48aN8vX1lZTSeWX37t3Vrl07RUZG6p133tHQoUPTRLIBAAAAAIBrMvP73WKxZGmZo0aNUp8+fbRs2TL98ssvCg8P16VLlxQVFaU5c+Zo7ty5eumll/Taa69laTlZERAQoB49emj58uX69ttvNXv2bPn4+Ej6v9p1np6eeuihh9LMmzpyrJQS3CtYsKBLyyxbtmw2lByO0CQ2k6ZPn67ExERJ0syZM81gXSo/Pz/NnDlTUsqINR988EGulxEAAAAAgPwodSCI6Oho87d7elKbd1osFhUuXDjN9BIlSmjs2LFas2aNYmJi9Mcff2jixIkKDg6WYRh6/fXX9d1332X/SmRAau252NhYrV69WlJKN15ffPGFJKlTp042I9OmKlq0qPm+ePHiqlu3rkuv4ODgnF+pfI6AXSYYhmEejDVr1lTz5s3tpmvevLlq1KghSfruu+9kGEaulREAAAAAgPwqtSZeQkKCdu3a5TDttm3bJEnVqlWTl5eXw7QeHh5q1KiRXn31Vf3222/m919++WWGypfVmn8369Kli4oVKybp/2rVhYWFKSoqSpL95rBSSvdeqcLDw7O1TMgaAnaZcPjwYZ08eVKS1K5dO4dpU6dHRUXpyJEjOV00AAAAAADyPet+3BYsWJBuui1btuivv/5KM48rGjVqZNbIO3/+fIbmTW2yKknx8fEZmteeAgUKqG/fvpKkH3/8URcvXjQDd35+furZs6fd+e6++275+flJkmbMmEFFIzeS7wN2X331lWrXri0/Pz8FBgaqWrVqGjx4sEJDQ9OdJ/VgllJq2DliPX3//v1ZLzAAAAAAAHCoadOmaty4sSTp008/takNl+rSpUt6/PHHJaXUnBs5cqTN9BUrViguLi7dZURGRurChQuSUkaqzYiQkBDz/aFDhzI0b3pSa9HFx8dr2bJl+uabbyRJPXr0UEBAgN15goOD9dRTT0mSfv/9dz3zzDNKTk5OdxlnzpzRvHnzsqW8cCzfDzphHXyTpIMHD+rgwYP67LPP1LNnTy1atCjNiDMnTpww3zvraLFcuXLm++PHj2e4fNbLsufUqVMZzhMAAAAAgNvdp59+qmbNmikhIUHdunXT6NGjdf/998vf3187d+7UtGnT9N9//0mSnn/++TQDWowfP15PPPGEevToobZt26p69ery9/dXdHS0Nm/ebPZb7+npqeHDh2eobC1btjTfP/PMM/rf//6nkJAQs6lsxYoVnY5uay/PSpUq6fDhw/rf//6nixcvSkq/OWyqqVOnKiwsTFu3btWHH36oDRs2aMSIEWrQoIH8/f114cIF7du3T7/++qvWrl2rO+64I8Pri4zLtwE7Pz8/de/eXXfddZdq1qypgIAAnTt3TmFhYfrkk08UHR2tVatWqUePHvrll19sRkq5fPmy+T69KHUqf39/8/2VK1cyXE7rgB8AAAAAAHBNgwYN9MMPP6hPnz6KjY3Ve++9p/feey9NulGjRunNN9+0m8fFixe1ePFiLV682O50b29vffLJJ2ZtPldVrVpVffv21Zdffql169Zp3bp1NtMPHz6sihUrZihPSXr44Yf1+uuvm8G6YsWKqUuXLg7n8fb21i+//KIhQ4bo22+/1e7du81ad/YEBQVluFzIuHwbsIuKirI7qkmnTp00evRode3aVTt37lRYWJhmz56tMWPGmGmuX79uvnfWIaW3t7f53lFVWgAAAAAAkL06d+6sgwcPavr06frxxx/133//KT4+XiVLllSbNm30xBNPqHXr1nbnDQ0N1Q8//KCNGzfqwIEDOn36tC5cuCA/Pz9VqVJFd911l0aOHKnKlStnqmxLly5V48aN9fXXX+uff/7R5cuXHTZHdcWAAQP0+uuvm5/79u3rUk29wMBAffPNN9q8ebMWL16sTZs26eTJk4qLi1NQUJCqVKmipk2b6t5771Xnzp2zVEa4xmLQo6Bd//33n2rWrKkbN26oatWq+vfff81p77zzjl544QVJ0tq1a3XPPfekm8/atWvVrVs3SdK7776r5557LkPlcKVJbNOmTSWlNLl11kQX2WxyIedpgNvF5Et5XQIAAHCb+vfff5WYmKgCBQqoWrVqeV0cAPlUZs5FJ06cMFtHZmdcJt/WsHOmcuXK6tSpk3788UcdPHhQJ0+eVOnSpSWlRJ5TOWvmevXqVfO9s+az9hCAAwAAAAAAyF/y/SixjtSuXdt8HxUVZb63DqI5qwFnPdAE/dEBAAAAAADAGQJ2DqSOznIz60De33//7TAP6+m1atXKnoIBAAAAAADgtkXAzoG//vrLfJ/aHFaSKlWqZH4OCwtzmMfGjRslSWXKlMnUCC8AAAAAAADIXwjYpePw4cP65ZdfJElVqlRRmTJlzGkWi0U9evSQlFKDLiIiwm4eERERZg27Hj16pFtjDwAAAAAAAEiVLwN2P/zwgxITE9OdfubMGfXu3VsJCQmSpCeffDJNmrFjx8rT01OSNHr0aMXFxdlMj4uL0+jRoyVJBQoU0NixY7Op9AAAAAAAALid5ctRYkePHq0bN26od+/eatGihSpWrChfX1+dP39eGzZs0Jw5c3T+/HlJUuvWrTVq1Kg0eVSvXl3jxo3TtGnTFBkZqVatWmn8+PGqUqWKDh06pLfeeks7d+6UJI0bN46hyQEAAAAAAOCSfBmwk6STJ09q5syZmjlzZrppevfurXnz5snb29vu9Ndff11nz57VggULtHPnTvXr1y9NmmHDhum1117LtnIDAAAAAADg9pYvA3aLFy9WWFiYtmzZov/++0/nz59XbGysAgICVK5cObVs2VKDBw9WixYtHObj4eGh+fPnq3fv3po7d662b9+u8+fPq1ixYmrSpIkef/xxde3aNZfWCgAAAAAAALeDfBmwa9eundq1a5dt+XXr1k3dunXLtvwAAAAAAACQf+XLQScAAAAAAAAAd0XADgAAAAAAAHAjBOwAAAAAAHnK09NTkpSUlKTk5OQ8Lg2A/Cg5OVlJSUmS/u+clJcI2AEAAAAA8pSPj48kyTAMXblyJY9LAyA/unLligzDkCT5+vrmcWkI2AEAAAAA8lhQUJD5/vTp04qNjaWmHYBckZycrNjYWJ0+fdr8LjAwMA9LlCJfjhILAAAAAHAf/v7+8vX1VVxcnJKSkhQVFSWLxeIWzdIA3N6SkpLMmnVSSu06f3//PCxRCgJ2AAAAAIA8ZbFYVL58eR07dkxxcXGSUprHJiYm5nHJAOQnvr6+Kl++vCwWS14XhYAdAAAAACDveXh4qEKFCrp69aouX75s1rYDgJzk6ekpX19fBQYGyt/f3y2CdRIBOwAAAACAm7BYLAoICFBAQEBeFwUA8hSDTgAAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2AEAAAAAAABuhIAdAAAAAAAA4EYI2Nkxfvx4WSwW87Vhwwan86xdu1a9evVS2bJl5e3trbJly6pXr15au3ZtzhcYAAAAAAAAt40CeV0Ad7Nr1y69//77LqdPTk7WY489pvnz59t8HxUVpaioKK1atUrDhw/XnDlz5OFBfBQAAAAAAACOEUGykhp8S0xMVIkSJVya53//+58ZrGvYsKGWL1+ubdu2afny5WrYsKEkad68eZo4cWKOlRsAAAAAAAC3DwJ2VmbMmKHt27erZs2aGjZsmNP0Bw4c0LvvvitJaty4scLDw9WvXz81adJE/fr10+bNm9W4cWNJ0jvvvKODBw/maPkBAAAAAABw6yNg9/8dO3ZML7/8siTpk08+kZeXl9N5pk+frsTEREnSzJkz5evrazPdz89PM2fOlCQlJibqgw8+yOZSAwAAAAAA4HZDwO7/GzVqlK5cuaLBgwerXbt2TtMbhqHvvvtOklSzZk01b97cbrrmzZurRo0akqTvvvtOhmFkX6EBAAAAAABw2yFgJ+nLL7/U6tWrVaRIEbOJqzOHDx/WyZMnJclpgC91elRUlI4cOZKlsgIAAAAAAOD2lu9Hib148aKefvppSdJbb72lYsWKuTTfX3/9Zb6vWbOmw7TW0/fv369KlSq5XL4TJ044nH7q1CmX8wIAAAAAAID7y/cBuxdeeEGnT59Wq1atXBpoIpV1IK1s2bIO05YrV858f/z48QyVz3peAAAAAAAA3P7ydZPYTZs2ad68eSpQoIA++eQTWSwWl+e9fPmy+T4gIMBhWn9/f/P9lStXMl5QAAAAAAAA5Bv5toZdQkKCHnvsMRmGoWeeeUZ169bN0PzXr1833zsbUdbb29t8HxcXl6HlOKuRd+rUKTVt2jRDeQIAAAAAAMB95duA3RtvvKG///5b5cuX16RJkzI8v4+Pj/k+ISHBYdr4+Hjzva+vb4aW46y5LQAAAAAAAG4v+bJJ7N9//60333xTkjRz5kybJquuCgwMNN87a+Z69epV872z5rMAAAAAAADI3/JlDbsPPvhACQkJqly5sq5du6YvvvgiTZq9e/ea79evX6/Tp09Lku6//375+/vb1HxzNpKrdbNWBpEAAAAAAACAI/kyYJfaRPW///5T//79naZ/9dVXzfeHDx+Wv7+/ateubX73999/O5zfenqtWrUyWlwAAAAAAADkI/mySWx2qFSpkkqXLi1JCgsLc5h248aNkqQyZcqoYsWKOV00AAAAAAAA3MLyZcBu0aJFMgzD4ct6IIrQ0FDz+9SAm8ViUY8ePSSl1KCLiIiwu6yIiAizhl2PHj1ksVhyduUAAAAAAABwS8uXAbvsMnbsWHl6ekqSRo8erbi4OJvpcXFxGj16tCSpQIECGjt2bG4XEQAAAAAAALcYAnZZUL16dY0bN06SFBkZqVatWmnFihWKjIzUihUr1KpVK0VGRkqSxo0bp2rVquVlcQEAAAAAAHALyJeDTmSn119/XWfPntWCBQu0c+dO9evXL02aYcOG6bXXXsuD0gEAAAAAAOBWQw27LPLw8ND8+fO1Zs0a9ejRQ6VLl5aXl5dKly6tHj166Mcff9S8efPk4cGmBgAAAAAAgHMWwzCMvC4EMu/EiRMqV66cJOn48eMqW7ZsHpcon5lcKK9LAOSeyZfyugQAAAAA4FZyKi5DtS8AAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANwIATsAAAAAAADAjRCwAwAAAAAAANxIrgbsOnbsqLvuuktHjx51eZ6TJ0+a8wEAAAAAAAC3uwK5ubANGzbIYrHo6tWrLs8TFxdnzgcAAAAAAADc7mgSCwAAAAAAALgRtw/YpdbG8/HxyeOSAAAAAAAAADnP7QN2a9eulSSVLVs2j0sCAAAAAAAA5Lwc7cNu6NChdr+fOHGigoODHc4bHx+vQ4cOafv27bJYLGrXrl0OlBAAAAAAAABwLzkasFu0aFGawSIMw9B3333n0vyGYUiSihQpogkTJmR7+QAAAAAAAAB3k6MBu/Lly9sE7I4ePSqLxaKQkBAVLFgw3fksFot8fHwUEhKili1bauTIkSpdunROFhUAAAAAAABwCzkasDty5IjNZw+PlC7z1q1bp9q1a+fkogEAAAAAAIBbUo4G7G7Wtm1bWSwW+fv75+ZiAQAAAAAAgFtGrgbsNmzYkJuLAwAAAAAAAG45HnldAAAAAAAAAAD/J1dr2NkTGxury5cvKykpyWna8uXL50KJAAAAAAAAgLyTJwG7X375RbNmzdLmzZsVExPj0jwWi0WJiYk5XDIAAAAAAAAgb+V6wG7MmDH6+P+1d9/RUVV7G8efk0BIIQRCCL036b2JghRBitIUpCMqgoKgXERUml0sgKBIRy5E2kWQJkUiID0QOgiEJk16SwGSnPePvBkT09vMSfh+1spaJ3P23vObEcPwZJfvvpMkmaZp76cHAAAAAAAALM2ugZ2fn58mT54sSXJ1dVX79u1Vq1YteXt7y8mJ7fQAAAAAAAAAuwZ2U6dOlSQVLVpUGzduVOnSpe359AAAAAAAAIDl2XVa24EDB2QYhkaPHk1YBwAAAAAAAMTDroHdw4cPJUk1atSw59MCAAAAAAAAmYZdA7sSJUpIku7du2fPpwUAAAAAAAAyDbsGdh07dpQk/fbbb/Z8WgAAAAAAACDTsGtgN3ToUBUrVkwTJkzQsWPH7PnUAAAAAAAAQKZg18DOy8tLa9euVf78+fX444/r+++/182bN+1ZAgAAAAAAAGBp2ez5ZKVKlZIkhYSE6NatWxo0aJDefPNN+fj4yN3dPdG+hmEoKCjIHmUCAAAAAAAADmPXwO7MmTOxvjdNU6Zp6sqVK0n2NQwjg6oCAAAAAAAArMOugV3v3r3t+XQAAAAAAABApmPXwG727Nn2fDoAAAAAAAAg07HroRMAAAAAAAAAEkdgBwAAAAAAAFgIgR0AAAAAAABgIXbdw27u3Llp6t+rV690qgQAAAAAAACwJrsGdn369JFhGKnqaxgGgR0AAAAAAACyPLsGdpJkmqa9nxIAAAAAAADINOwa2J0+fTrJNsHBwTp+/Lj8/Py0ZMkSNWzYUNOmTZO7u7sdKgQAAAAAAAAcy66BXfHixZPVrmLFimrfvr0WLVqkbt26adCgQVq/fn0GVwcAAAAAAAA4nqVPie3cubN69+4tf39/TZ061dHlAAAAAAAAABnO0oGdFBXamaapOXPmOLoUAAAAAAAAIMNZPrDLnz+/JOnPP/90cCUAAAAAAABAxrN8YHfu3DlJ0sOHD9NtzDt37mjBggUaOnSoGjdurDJlysjLy0suLi7y9fXVU089pXHjxun69evJGm/btm3q0aOHihcvLldXVxUoUEAtW7bUTz/9lG41AwAAAAAA4NFgmKZpOrqIhDx8+FBNmjTRtm3bVLVqVe3bty9dxt2wYYOefvrpJNv5+Pho3rx5atmyZYJtxowZo48++kiRkZHx3m/Tpo2WLFkiV1fXVNebmPPnz6to0aKSpL/++ktFihTJkOdBAsZ4OboCwH7G3HZ0BQAAAABgKRmVy9j1lNjo2XKJiYyM1M2bNxUQEKDJkyfr0KFDMgxDL774YrrWUrRoUTVp0kS1atVS0aJFVbBgQUVGRur8+fNasmSJli5dqmvXrum5557Trl27VK1atThjTJ06VWPHjpUklS5dWu+9956qVKmiixcvauLEifL399eqVavUt29f+fn5pWv9AAAAAAAAyJrsOsPO2dk5xX1M01SDBg20ceNG5ciRI13qiIiISLKWZcuWqUOHDpKkDh06aOnSpbHu37hxQ6VKldLt27dVrFgx7dmzRz4+PrGeo0OHDlqxYoUkyd/fX0899VS61B8TM+wcjBl2eJQwww4AAAAAYsmoXMaue9iZppmirzx58mjEiBHasGFDuoV1UvKCw/bt26t8+fKSpC1btsS5P2PGDN2+HfWP1y+++CJWWBf9HN9//73tub788su0lg0AAAAAAIBHgF2XxM6ePTvJNk5OTvL09FTJkiVVuXLlVM3KSy+enp6SpLCwsDj3li1bJknKlSuXOnbsGG//IkWKqHnz5lq7dq1+++033b171zYmAAAAAAAAEB+7Bna9e/e259OlyZ9//mk75OKxxx6Lde/BgwfatWuXJKlBgwZycXFJcJzGjRtr7dq1un//vgICAtSkSZMMqxkAAAAAAACZn12XxFpdSEiITpw4oW+++UaNGzdWeHi4JGnIkCGx2h0/flwRERGS4oZ5/xbz/tGjR9O3YAAAAAAAAGQ5dp1hZ0Vz5szRSy+9lOD9d999V926dYv12Pnz523XSW0mGL3xoBS1+WBKxXyu+Fy6dCnFYwIAAAAAAMC6HBrY7dmzRxs2bNChQ4d048YNSZK3t7cqV66s5s2bq1atWg6rrXr16po2bZrq1KkT597du3dt1zlz5kx0HA8PD9v1vXv3UlxHzMAPAAAAAAAAWZ9DAruDBw+qX79+tn3g4vPee++pXr16mjp1qqpUqZJhtbRv3161a9eWJIWGhiooKEiLFi3Szz//rK5du2rChAlq27ZtrD4xD6FIbP86SbFOtw0NDU3HygEAAAAAyTbGy9EVAPYx5rajK0A6sHtgt2HDBj377LN68OCBTNOUJGXPnl158+aVJF2/fl0PHz6UJO3YsUN169bVypUr1axZswypJ3fu3MqdO7ft+zp16ujFF1/Uf//7X/Xu3Vvt2rXTzJkz1adPH1sbV1dX2/WDBw8SHf/+/fu2azc3txTXl9Qy2kuXLqlu3bopHhcAAAAAAADWZNdDJ65du6YXXnhB9+/fl2EYeuWVV7Rz504FBwfr4sWLunjxokJCQrRr1y69+uqrcnZ21v379/XCCy/o+vXr9ixVPXv21AsvvKDIyEgNHDjQtmRXkjw9PW3XSS1zDQ4Otl0ntXw2PkWKFEn0q2DBgikeEwAAAAAAANZl18Bu4sSJun37tlxcXLRq1SrbHnHZsv0z0c/Z2Vm1a9fW1KlTtWrVKmXPnl23b9/WxIkT7VmqJKldu3aSokK3X3/91fZ4zIMmkjoUIuYMOfajAwAAAAAAQFLsGtitWrVKhmFo4MCBatmyZZLtW7RooUGDBsk0Ta1atcoOFcaWL18+2/XZs2dt1+XKlZOzs7Mk6dixY4mOEfN+hQoV0rlCAAAAAAAAZDV2DexOnz4tSXruueeS3Se67alTpzKkpsRcuHDBdh1zOauLi4tt37jt27cnuo/dpk2bJEUdPhF9uAUAAAAAAACQELsGdtGnq3p4eCS7T3TbmIc32MvixYtt1/8+qbZ9+/aSpDt37mjp0qXx9j9//rw2bNggSWrWrFmsve8AAAAAAACA+Ng1sCtQoIAkKTAwMNl9otvmz58/3eqYM2eOLTxMyPjx47V69WpJUsmSJfXkk0/Guv/KK6/IyyvqWPB33303zqEYERERev311xURESFJGjZsWHqVDwAAAAAAgCzMroHdk08+KdM09fnnn+vOnTtJtr97966++OILGYYRJzBLizFjxqhw4cLq16+f5s6dq61bt2r//v36448/NGXKFD3xxBN6++23JUUtf502bZptz7po3t7e+uKLLyRF7W9Xr149zZ49WwEBAfrll1/09NNPa8WKFZKkrl276qmnnkq3+gEAAAAAAJB1ZUu6Sfp57bXXNG/ePJ0+fVqNGjXSjBkzEtzXLSAgQP369VNQUJAMw9Brr72WrrXcuHFD06dP1/Tp0xNsU6RIEc2aNUvNmzeP9/5rr72mixcv6qOPPlJQUJD69u0bp03r1q01a9asdKsbAAAAAAAAWZtdA7uGDRvq9ddf1/fff6+DBw+qXr16qlSpkurVqydfX18ZhqG///5bO3fu1OHDh239Xn/9dTVs2DDd6li7dq1WrVqlrVu36uTJk/r77791/fp1ubm5ydfXV9WrV1fbtm3VuXNnubu7JzrW2LFj1bJlS3333XfasmWL/v77b+XOnVvVqlXTSy+9pK5du6Zb3QAAAAAAAMj67BrYSdKkSZPk7u6ub775RpGRkTp06FCscE6STNOUJDk5Oek///mPPv/883StoXz58ipfvrxt2WtaPf7443r88cfTZSwAAAAAAAA82uy6h50kGYahcePGad++fRowYIDKli0r0zRjfZUtW1YDBgzQvn37bHvYAQAAAAAAAI8Cu8+wi1a5cmV99913kqQHDx7o5s2bkqQ8efLIxcXFUWUBAAAAAAAADuWwwC4mFxcX5c+f39FlAAAAAAAAAA6XoUti16xZo5o1a6pmzZry8/NLUV8/Pz9b3w0bNmRQhQAAAAAAAIC1ZFhgZ5qm3nrrLe3fv1/58uVTt27dUtS/a9eu8vHx0b59+zR06NAMqhIAAAAAAACwlgwL7DZu3Kjjx4/LyclJ48ePT3F/wzA0YcIEOTs769ChQ9q0aVMGVAkAAAAAAABYS4YFdv/73/8kSU8//bQqVqyYqjEqVqyoli1bSpKWLFmSbrUBAAAAAAAAVpVhgd2uXbtkGIaeffbZNI3Ttm1bmaapHTt2pFNlAAAAAAAAgHVlWGB39uxZSVL58uXTNE65cuUkSWfOnElrSQAAAAAAAIDlZVhgd/v2bUmSt7d3msaJ7n/nzp001wQAAAAAAABYXYYFdrly5ZIk3bp1K03jRPf39PRMY0UAAAAAAACA9WVYYJcvXz5J0pEjR9I0ztGjRyVJvr6+aa4JAAAAAAAAsLoMC+zq1q0r0zS1YsWKNI2zfPlyGYahOnXqpFNlAAAAAAAAgHVlWGDXqlUrSdK6dev0xx9/pGqMzZs3a926dbHGAwAAAAAAALKyDAvsOnXqpBIlSsg0Tb3wwgs6ceJEivofP35cnTt3lmEYKlGihJ5//vkMqhQAAAAAAACwjgwL7LJnz66vvvpKknTlyhXVqlVLEydOVHBwcKL97t27pwkTJqh27dq6cuWKJOnrr79WtmzZMqpUAAAAAAAAwDIyNAXr2LGjxo4dq9GjRys4OFhvv/22Ro4cqSeffFK1atWSr6+vPDw8FBwcrL///lt79+7Vli1bFBwcLNM0JUljx45V+/btM7JMAAAAAAAAwDIyfNrayJEjVaRIEQ0aNEghISG6d++efv31V/3666/xto8O6tzd3TV58mT16dMno0sEAAAAAAAALCPDlsTG9NJLL+n48eN6++235ePjI9M0E/zy8fHR0KFDdfz4ccI6AAAAAAAAPHLstjFcoUKF9NVXX+mrr77S4cOHtX//fl2/fl13796Vp6en8ubNq2rVqqlSpUr2KgkAAAAAAACwHIec5FCpUiWCOQAAAAAAACAedlkSCwAAAAAAACB5COwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALeWQDu4CAAH344Ydq0aKFihQpohw5cihnzpwqV66cXnrpJf3xxx8pGm/NmjXq0KGDbawiRYqoQ4cOWrNmTQa9AgAAAAAAAGRF2RxdgCM0atRIW7ZsifP4gwcPdOLECZ04cUJz5sxRr169NH36dLm4uCQ4VmRkpPr166eZM2fGevzChQu6cOGCli1bpldeeUVTp06Vk9Mjm48CAAAAAAAgmR7JBOnixYuSpEKFCmnw4MFasmSJdu3ape3bt+ubb75R4cKFJUlz585Vnz59Eh3r/ffft4V1NWrU0E8//aRdu3bpp59+Uo0aNSRJM2bM0AcffJBxLwgAAAAAAABZhmGapunoIuytbdu26tWrlzp16iRnZ+c4969du6aGDRvq+PHjkqRNmzapUaNGcdodP35clSpVUnh4uGrXrq3NmzfLzc3Ndj8kJESNGzdWQECAsmXLpqNHj6pMmTLp+lrOnz+vokWLSpL++usvFSlSJF3HRxLGeDm6AsB+xtx2dAUAAACpx2d3PCr43G5XGZXLPJIz7FauXKnOnTvHG9ZJko+Pj77++mvb90uWLIm33YQJExQeHi5JmjRpUqywTpLc3d01adIkSVJ4eLjGjx+fHuUDAAAAAAAgC3skA7vkaNKkie06KCgozn3TNLV8+XJJ0mOPPab69evHO079+vVVvnx5SdLy5cv1CE5oBAAAAAAAQAoQ2CXg/v37tuv4ZuKdPn3athde48aNEx0r+v6FCxd05syZ9CsSAAAAAAAAWc4jeUpscmzatMl2XaFChTj3jxw5Yrt+7LHHEh0r5v2jR4+qZMmSya7j/Pnzid6/dOlSsscCAAAAAACA9RHYxSMyMlKff/657fvOnTvHaRMzSEtqQ8HozQelqA0IUyJmXwAAAAAAAGR9LImNx/jx47Vr1y5JUseOHVWrVq04be7evWu7zpkzZ6LjeXh42K7v3buXTlUCAAAAAAAgK2KG3b9s2rRJ7777riTJ19dXU6ZMibddWFiY7drFxSXRMXPkyGG7Dg0NTVE9Sc3Iu3TpkurWrZuiMQEAAAAAAGBdBHYxHD58WB06dFB4eLhcXV21ePFi+fr6xtvW1dXVdv3gwYNEx415gIWbm1uKakpquS0AAAAAAACyFpbE/r/Tp0+rRYsWunnzppydnbVgwQI1atQowfaenp6266SWuQYHB9uuk1o+CwAAAAAAgEcbgZ2kixcvqnnz5rp48aIMw9CsWbPUrl27RPvEnPmW1EmuMZe1cogEAAAAAAAAEvPIB3bXrl3T008/rVOnTkmSJk2apF69eiXZr2LFirbrY8eOJdo25v0KFSqkslIAAAAAAAA8Ch7pwO727dtq2bKljhw5Ikn6/PPP9cYbbySrb8mSJVWoUCFJUQdVJGbz5s2SpMKFC6tEiRKpLxgAAAAAAABZ3iMb2IWEhKhNmzbau3evJOn999/X8OHDk93fMAzbstljx45px44d8bbbsWOHbYZdu3btZBhGGisHAAAAAABAVvZIBnYPHjxQhw4dtHXrVknS4MGD9fHHH6d4nCFDhsjZ2VmSNGjQIIWGhsa6HxoaqkGDBkmSsmXLpiFDhqStcAAAAAAAAGR52RxdgCN07dpV69atkyQ1bdpUL7/8sg4dOpRgexcXF5UrVy7O4+XKldOwYcP0+eefKyAgQA0bNtTw4cNVunRpBQUF6YsvvlBgYKAkadiwYSpbtmzGvCAAAAAAAABkGY9kYLd06VLb9caNG1W1atVE2xcvXlxnzpyJ994nn3yiK1euaNasWQoMDNSLL74Yp83LL7+cqhl8AAAAAAAAePQ8kkti05OTk5NmzpypVatWqV27dipUqJBcXFxUqFAhtWvXTqtXr9aMGTPk5MRbDQAAAAAAgKQ9kjPsTNNM9zFbt26t1q1bp/u4AAAAAAAAeLQw7QsAAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwkGyOLgAAAMBSxng5ugLAfsbcdnQFAAAgHo/sDLsrV65o5cqVGjVqlFq1aiUfHx8ZhiHDMNSnT58Uj7dmzRp16NBBRYoUUY4cOVSkSBF16NBBa9asSf/iAQAAAAAAkGU9sjPs8ufPny7jREZGql+/fpo5c2asxy9cuKALFy5o2bJleuWVVzR16lQ5OT2y+SgAAAAAAACSiQRJUrFixdSiRYtU9X3//fdtYV2NGjX0008/adeuXfrpp59Uo0YNSdKMGTP0wQcfpFu9AAAAAAAAyLoe2Rl2o0aNUp06dVSnTh3lz59fZ86cUcmSJVM0xvHjx/XVV19JkmrXrq3NmzfLzc1NklSnTh0999xzaty4sQICAvTll1+qb9++KlOmTLq/FgAAAAAAAGQdj+wMu7Fjx6pt27ZpWho7YcIEhYeHS5ImTZpkC+uiubu7a9KkSZKk8PBwjR8/PvUFAwAAAAAA4JHwyAZ2aWWappYvXy5Jeuyxx1S/fv1429WvX1/ly5eXJC1fvlymadqtRgAAAAAAAGQ+BHapdPr0aV28eFGS1Lhx40TbRt+/cOGCzpw5k9GlAQAAAAAAIBMjsEulI0eO2K4fe+yxRNvGvH/06NEMqwkAAAAAAACZ3yN76ERanT9/3nZdpEiRRNsWLVrUdv3XX3+l+nnic+nSpRSNBwAAAAAAAGsjsEulu3fv2q5z5syZaFsPDw/b9b1791L0PDHDPgAAAAAAAGR9LIlNpbCwMNu1i4tLom1z5Mhhuw4NDc2wmgAAAAAAAJD5McMulVxdXW3XDx48SLTt/fv3bddubm4pep6kltBeunRJdevWTdGYAAAAAAAAsC4Cu1Ty9PS0XSe1zDU4ONh2ndTy2X9Lan88AAAAAAAAZC0siU2lmEFaUgdDxJwlx550AAAAAAAASAyBXSpVrFjRdn3s2LFE28a8X6FChQyrCQAAAAAAAJkfgV0qlSxZUoUKFZIkbdq0KdG2mzdvliQVLlxYJUqUyOjSAAAAAAAAkIkR2KWSYRhq166dpKgZdDt27Ii33Y4dO2wz7Nq1ayfDMOxWIwAAAAAAADIfArs0GDJkiJydnSVJgwYNUmhoaKz7oaGhGjRokCQpW7ZsGjJkiL1LBAAAAAAAQCbzyJ4S+8cff+jkyZO2769du2a7PnnypObMmROrfZ8+feKMUa5cOQ0bNkyff/65AgIC1LBhQw0fPlylS5dWUFCQvvjiCwUGBkqShg0bprJly2bIawEAAAAAAEDW8cgGdjNmzNCPP/4Y772tW7dq69atsR6LL7CTpE8++URXrlzRrFmzFBgYqBdffDFOm5dfflkff/xxmmsGAAAAAABA1seS2DRycnLSzJkztWrVKrVr106FChWSi4uLChUqpHbt2mn16tWaMWOGnJx4qwEAAAAAAJC0R3aG3Zw5c+Ise02L1q1bq3Xr1uk2HgAAAAAAAB5NTPsCAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAAC8nm6AKAzKxEmJ+jSwDs5oyjCwAAAACARwQz7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQrI5ugAAAAAAADJaiTA/R5cA2MUZRxeAdMEMu3R09uxZDR06VI899pg8PDzk7e2tOnXq6Msvv1RISIijywMAAAAAAEAmwAy7dLJixQr16NFDd+7csT0WEhKigIAABQQEaMaMGVq1apXKlCnjwCoBAAAAAABgdcywSweBgYHq0qWL7ty5o5w5c+qTTz7Rtm3b9Ntvv+nVV1+VJB0/flxt2rTR3bt3HVwtAAAAAAAArIwZdulg8ODBCg0NVbZs2bRu3To1aNDAdq9p06YqW7as3nnnHR0/flxff/21xowZ47hiAQAAAAAAYGnMsEujXbt2acuWLZKkl19+OVZYF23o0KGqUKGCJGnixIl6+PChXWsEAAAAAABA5kFgl0bLli2zXb/00kvxtnFyclKvXr0kSbdu3ZK/v789SgMAAAAAAEAmRGCXRn/88YckycPDQ7Vq1UqwXePGjW3XW7duzfC6AAAAAAAAkDkR2KXR0aNHJUllypRRtmwJbwn42GOPxekDAAAAAAAA/BuHTqRBWFiYrl27JkkqUqRIom3z5MkjDw8PBQcH66+//kr2c5w/fz7R+zHHunTpUrLHRfoIv3PN0SUAdpPUzyMgy7gT6egKAPvhZzseIXx2x6OCz+32FTOLCQ8PT7dxCezS4O7du7brnDlzJtk+OrC7d+9esp+jaNGiyW5bt27dZLcFgJQqOsXRFQAA0t345H/WBABkDnxud5yrV6+qRIkS6TIWS2LTICwszHbt4uKSZPscOXJIkkJDQzOsJgAAAAAAAGRuzLBLA1dXV9v1gwcPkmx///59SZKbm1uynyOp5bNhYWE6duyY8ufPr3z58iW6jx6Q2V26dMk2k3TXrl0qWLCggysCAKQVP9sBIGvi5zseFeHh4bp69aokqUqVKuk2LulOGnh6etquk7PMNTg4WFLyls9GS2pvPCnqwAvgUVOwYMFk/f8BAMg8+NkOAFkTP9+R1aXXMtiYWBKbBq6ursqbN6+kpDd1vHnzpi2wS8m+dAAAAAAAAHi0ENilUcWKFSVJJ0+eTPQ0kGPHjtmuK1SokOF1AQAAAAAAIHMisEujJ554QlLUctc9e/Yk2G7Tpk2264YNG2Z4XQAAAAAAAMicCOzSqH379rbr2bNnx9smMjJSc+fOlSTlzp1bTZo0sUdpAAAAAAAAyIQI7NKobt26evLJJyVJM2fO1Pbt2+O0+frrr3X06FFJ0uDBg5U9e3a71ggAAAAAAIDMg1Ni08HEiRPVsGFDhYaGqkWLFnrvvffUpEkThYaGasGCBZo2bZokqVy5cho6dKiDqwUAAAAAAICVEdilgxo1amjhwoXq0aOH7ty5o/feey9Om3LlymnVqlXy9PR0QIUAAAAAAADILAzTNE1HF5FVnD17VhMnTtSqVat0/vx5ubi4qEyZMnrhhRc0cOBAubu7O7pEAAAAAAAAWByBHQAAAAAAAGAhHDoBAAAAAAAAWAiBHQAAAAAAAGAhBHYAAAAAAACAhRDYAQAAAAAAABZCYAcAAAAAAABYCIEdAAAAAAAAYCEEdgAAAAAAAICFENgBAAAAAAAAFkJgBwAAAAAAAFgIgR0AAAAAAABgIQR2AAAAAAAAgIUQ2AEAAAAAAAAWQmAHAAAAAAAAWEg2RxcAAMlx4sQJzZ07V9u3b9fly5cVGhqqtWvXqkyZMrY2hw4d0rlz5+Th4aHGjRs7sFoAAADg0RUaGqo9e/bo8uXLCgkJUfv27ZUrVy5HlwVkKgR2ACwtMjJS77zzjiZOnKjIyEiZpilJMgxDDx48iNX23Llzatu2rbJly6bTp0+rcOHCjigZACCpVKlS6T6mYRgKCgpK93EBAOnjr7/+0nvvvafFixfr4cOHtsdr166tihUr2r6fOXOmpk6dKi8vL61bt06GYTiiXMDSDDP6X78AYEGvvvqqZs2aJdM0VbhwYTVo0EBLliyRYRg6ePBgrL/4Jal06dI6c+aMvvnmGw0ePNhBVQMAnJzSf+cVwzAUERGR7uMCANJu586datOmjW7evKmYMUN8n9uvXLmiYsWK6eHDh1q9erVatmzpiJIBS2OGHQDL+u233zRz5kwZhqH33ntPY8eOlbOzc6L/CHzhhRc0btw4bdy4kcAOAByod+/eji4BAGAnt27dUrt27XTjxg0VLFhQI0eO1JNPPqkqVarE297X11etWrXSL7/8olWrVhHYAfEgsANgWdOmTZMktW7dWh9//HGy+tStW1eSdPjw4QyrCwCQtNmzZzu6BACAnXz77be6cuWKfHx8tH37dhUrVizJPs2bN9fy5cu1a9cuO1QIZD6cEgvAsrZv3y7DMPTyyy8nu0+RIkUkSZcvX86osgAAAADEsGLFChmGobfffjtZYZ0kVapUSZLYmxRIAIEdAMu6cuWKJKlEiRLJ7pM9e3ZJUnh4eEaUBAAAAOBfTp48KUlq1KhRsvvkyZNHknTnzp0MqQnI7AjsAFiWh4eHJOnq1avJ7nP+/HlJkre3d4bUBAAAACC2sLAwSf/88jw5goODJUlubm4ZUhOQ2bGHHQDLKlWqlPbu3asjR47o6aefTlafNWvWSPpnij0AwPrOnDmja9euKTQ0NNbJgvFJyewNAIB9+Pr66vz58zp9+rTq1KmTrD779u2TJBUqVCgDKwMyLwI7AJbVokUL7dmzR999950GDRqU6OmwknTkyBHNmTNHhmGodevWdqoSAJAaf/75pz799FP98ssvyV4OZRgGWx4AgAXVq1dP58+f15o1a9S5c+ck25umqenTp8swDD355JN2qBDIfFgSC8Cy3nzzTXl4eCgoKEj9+/dP9B9p69evV4sWLRQWFiZvb2+9+uqrdqwUAJASy5YtU82aNTVv3jzdvn1bpmkm+wsAYD3du3eXaZqaP3++beZcYoYOHar9+/dLknr37p3B1QGZk2HyyQeAhc2fP1+9evWSFHUCbJs2bfTDDz/IMAy98sorMk1TW7du1bFjx2SappycnLR8+XK1adPGwZUDAOLz119/qUKFCgoJCVHhwoU1bNgwubu7q1+/fjIMQxs2bNCNGzcUEBCg//73v7p48aKeeOIJjRkzRs7OzmrcuLGjXwIAIB7NmjWTv7+/8uTJo48//lidOnVSgQIFZBiGAgMD5ePjo61bt+rbb7/Vtm3bJEkdO3bU4sWLHVw5YE0EdgAsb9GiRXrttdd0+/ZtGYYR5370j7GcOXPqxx9/VIcOHexdIgAgmYYNG6avv/5anp6eOnr0qAoVKqTDhw+rSpUqMgxDERERtrahoaF6+eWXtXDhQr344ouaP3++AysHACTm1q1batasmQIDA+P9zB6TaZqqX7++1q9fbztoDkBsLIkFYHmdO3fWyZMnNXbsWNWqVUvOzs6xlkdVqlRJI0aM0MmTJwnrAMDiNmzYIMMw9Prrrye50bibm5vmzZunGjVqaMGCBfrf//5npyoBACmVO3dubd++XSNGjFCuXLkS3NrAzc1N77zzjn7//XfCOiARzLADkOlERkbqxo0bioiIkLe3d4qOjwcAOFaePHl0584dLVu2TM8++6ykqEODKleuLMMwdP/+fWXLFvtctLlz56pPnz5q1aqVVq1a5YiyAQApEBwcrE2bNikgIEBXrlxRRESE8ubNqxo1aqh58+by8vJydImA5XFKLIBMx8nJST4+Po4uAwCQCsHBwZKkokWL2h5zd3e3Xd++fVt58+aN1adSpUqSZNugHABgbR4eHmrdurVat27t6FKATIslsQAs64cfftCNGzccXQYAIB1Fz6oICwuzPRYzoAsKCorT5/bt25Kka9euZXB1AIDUYOEekP4I7ABY1uuvv66CBQvqueee08KFC2P94w4AkDmVL19eknTq1CnbY56enipevLgkad26dXH6rF+/XlLU/kgAAOspUqSI/vOf/2jv3r2OLgXIMgjsAFjaw4cPtWrVKnXr1k358+dX7969tW7dOkVGRjq6NABAKjRo0ECStGPHjliPt23bVqZp6ssvv5S/v7/t8UWLFmnixIkyDEMNGza0a60AgOS5dOmSxo8frzp16qhChQr65JNPYv1iBkDKcegEAMvasWOH5s+fr8WLF+vKlSuSZDsi3tfXVy+++KK6deumOnXqOLJMAEAK+Pv7q1mzZipUqJDOnj0rZ2dnSdK5c+dUsWJFhYaGSpK8vb0VFhamkJAQmaYpZ2dnbdmyRfXr13dk+QCAeLRs2VIbN25URESEpH8+s9erV089evRQ586d2YMaSCECOwCWFxERoQ0bNmj+/PlatmyZ7t27J+mfDwKlS5dWjx491K1bN5UpU8aRpQIAkmCapj788EOFh4fr1VdfVbFixWz31qxZo+7du+vWrVux+uTIkUNTpkxRnz597FssACDZrly5ooULF8rPz087d+6U9M/ndWdnZz399NPq3r272rdvH+uwIQDxI7ADkKmEhYXpl19+0fz587V27Vo9ePBA0j8fBmrXrq0ePXqoS5cu8vX1dWSpAIBUuH79upYsWaLDhw8rPDxcZcuWVefOnVW4cGFHlwYASKZTp07Jz89Pfn5+OnbsmKR/Pq+7u7urXbt26t69u1q2bCknJ3bqAuJDYAcg07p586aWLFmi+fPna8uWLbbTqQzDULZs2XT//n0HVwgAAAA82gIDA+Xn56cFCxbowoULkv4J73x8fNSlSxd9++23jiwRsCQCOwBZwoULF+Tn56fPPvtMt27dkmEYtj00AADW0bdvX0lSq1at9MILLzi4GgCAvZimqd9//11+fn5aunSpbt68KUl8bgcSQGAHINM7dOiQ5s+fr59++kl//fWXTNPkL34AsKjoQyZWr16tli1bOrgaAIC93blzR/Pnz9f777/PL9qBRGRzdAEAkBrnzp3TTz/9JD8/Px06dEiSbEti3dzc9OyzzzqyPABAAvLly6erV68qf/78ji4FAGAnDx480MqVK+Xn56fVq1ezdQ2QDAR2ADKNmzdvatGiRZo/f762bdsm0zRtIZ2zs7OaNm2q7t27q2PHjsqZM6eDqwUAxKdixYratGmTzp49q+rVqzu6HABABtq4caPmz5+vpUuX6s6dO5L++SV7yZIl1a1bN3Xv3t2RJQKWRWAHwNJCQ0O1fPly+fn5ad26dXr48KGkf/6ir127trp3764XX3yR2RoAkAn06NFDv//+u3788Ue1a9fO0eUAANLZ3r17NX/+fC1cuFCXLl2S9M9ndx8fH3Xu3Fndu3dXgwYNHFkmYHnsYQfAsnr27Knly5crODhY0j9/0ZcuXVrdu3dX9+7dVbZsWUeWCABIIdM01aJFC23cuFEjR47U6NGjbacFAgAyp6CgIPn5+cnPz0/Hjx+X9M9nd3d3d7Vr107du3dXy5YtbXuZAkgcgR0Ay3JycrJd+/r6qkuXLurevbvq1q3rwKoAAGmxefNmhYaGavjw4Tp48KDKlSunLl26qGrVqsqTJ0+S/5Br1KiRnSoFACSXk5OTDMOItV3N008/re7du6t9+/by8PBwcIVA5kNgB8CyPD091aFDB3Xv3l3Nmzfnt3EAkAVE/6MuNQzDUHh4eDpXBABIq+hftNerV0/du3dXly5dlC9fPgdXBWRuBHYALCs0NFRubm6OLgMAkI5izp5OKcMwFBERkY7VAADSw0cffaRu3bqpdOnSji4FyDII7AAAAGA3mzZtSlP/xo0bp1MlAAAA1kVgBwAAAAAAAFhINkcXAABz5861Xffq1Svex1Mj5lgAAAAAAGQWzLAD4HDRG5D/ezNxNiYHgKynb9++MgxDH3/8sQoWLJisPlevXtXw4cNlGIZmzpyZwRUCABJSqlQpSVGftYOCguI8nhr/HgtAFAI7AA4XvQH5vzcTZ2NyAMh6on8Zc/DgQVWsWDFZfYKCglS2bFl+tgOAg/G5HbAflsQCcLjTp0+n6HEAAAAA9te7d+8UPQ4g9ZhhBwAAALtJzQy7w4cPq0qVKnJ1dVVISEgGVwgAAOB4qZ+3CgAAANjB1q1bJUn58+d3cCUAAAD2wZJYAJbFxuQAkPl9+OGH8T7+/fffy9fXN9G+9+/fV1BQkH755RcZhqGGDRtmRIkAgDQ6d+6cJKlw4cJydnZOVp+IiAhduHBBklSsWLEMqw3IrFgSC8Cy2JgcADK/f5/4Hf3RMyWngJumKVdXV23fvl3VqlVL9xoBAGnj5OQkJycnHThwIMWf252cnBQeHp7BFQKZD0tiAQAAkKFM07R9GYYhwzBiPZbQV44cOVSiRAl1796dsA4ALC61c4GYQwTEjyWxALKUsLAwSVKOHDkcXAkAQJIiIyNjfR894+7QoUPJnoUBAMh6ooM6JyfmEQHxIbADkKWwMTkAWFuxYsVkGIZcXFwcXQoAwIEuXbokSfL09HRwJYA1EdgBsAw2JgeArO/MmTOOLgEAkEGSsz/pw4cPFRQUpE8++USSVL58+YwuC8iUOHQCgGWwMTkAAABgff8+CTY1n9ujjRs3TkOHDk2XuoCshMAOgGX8e/+K6L/wk/NjytXVVQULFtTjjz+u//znP4R1AAAAQAZJr33nOnfurPnz58cJAAGwJBaAhbAxOQBkfaVKlUp1X8MwFBQUlI7VAABSY/To0bG+Hzt2rAzDUP/+/RPdysYwjFi/aC9dunRGlwpkWsywA2BZJUqUkGEYWr9+vcqUKePocgAA6SAlszIMw4g1y9owDEVERGREWQCANIj+RfvBgwf5RTuQTphhB8Cy2JgcALKe3r17J9kmODhYx48f14EDB2QYhmrUqKEqVarYoToAQGrMnj1bklSkSBEHVwJkHcywAwAAgCUdPnxYL7/8sg4ePKj//ve/6tixo6NLAgAAsAsCOwAAAFjWvXv3VKNGDV26dEkBAQF67LHHHF0SAABAhiOwA5Ap+Pv7a9myZdq/f7+uXbum0NDQRE+PZWNyAMg6pkyZojfeeEMvvfSSZs6c6ehyAOCRtXnzZtt1o0aN4n08NWKOBSAKgR0AS7ty5YpefPFFbdq0SZISDOnYmBwAsq7du3erXr16KlasGPubAoADRR8uYRiGwsPD4zyeGv8eC0AUDp0AYFkPHz5Uq1attG/fPpmmqerVq6tw4cJatWqVDMNQjx49dOPGDe3du1eXLl2SYRiqWbOmKleu7OjSAQDpKPoXMn///beDKwEAJPQLdOYCAemLwA6AZc2ZM0eBgYEyDEOzZ89W7969dfjwYa1atUqS9OOPP9raLlu2TAMHDtSRI0f07rvvqlOnTo4qGwCQztauXStJ8vLycnAlAPBo8/f3T9HjAFKPJbEALOuZZ57RunXr1KpVK1tId/jwYVWpUiXeJa9BQUGqXbu2wsPDtXfvXpUtW9YRZQMA0tGCBQvUt29f3b9/Xx06dNCSJUscXRIAAECGY4YdAMvav3+/belrfEzTjLVXRunSpTV48GB9+OGHmjhxoiZPnmyvUgEAydS3b98k20RGRurmzZvau3evLl68KNM0lS1bNr377rt2qBAAAMDxCOwAWNaNGzckSSVLlrQ95uLiYrsOCQmRh4dHrD7NmjXThx9+qPXr19unSABAisyZMyfZG5NHLwTJlSuXZsyYodq1a2dkaQAAAJZBYAfAslxcXBQeHh4rpMuVK5ft+sKFCypXrlysPq6urrZ7AADrKVasWJKBnZOTkzw9PVWyZEk1btxYPXr0kI+Pj50qBABkhBUrVmjRokW6du2aSpYsqVdeeUU1a9Z0dFmAZRHYAbCsYsWK6dixY7FOBcyfP788PT1179497dy5M05gd+jQIUlK9bHyAICMdebMGUeXAABIZ/7+/urSpYtcXV114MAB5c6dO9b9kSNH6tNPP4312IwZMzRz5kz17NnTjpUCmYeTowsAgIRE/8YtMDAw1uONGjWSaZqaOHGi7t+/b3v81q1b+uKLL2QYhipWrGjXWgEAAIBH1erVq3Xt2jXVqVMnTlh34MABffrppzJNU6ZpKnfu3DJNU+Hh4Xrttdf4RQ6QAAI7AJbVrFkzmaZpOyE2Wv/+/SVFBXlVq1bVsGHD9Prrr6tKlSo6fvy4JKlXr152rxcAAAB4FP3xxx8yDEPNmzePc2/KlCkyTVN58uTRnj17dP36de3atUve3t66f/++fvjhBwdUDFgfgR0Ay2rfvr2KFSum8+fPKygoyPZ4mzZt1LdvX5mmqRMnTuibb77R1KlTbfvWtWjRQgMGDHBU2QCAFDp//rwCAgK0efNmhYaGOrocAEAKXbp0SZJUqVKlOPdWrlwpwzA0cOBA1ahRQ5JUu3ZtDRw4UKZpasOGDXatFcgs2MMOgGXlzp07wSnyM2bMUIMGDTRjxgwdPnxY4eHhKlu2rHr16qXBgwfLyYnfRwCAld29e1fjxo3TnDlzdPHiRdvjBw8ejLWtwYIFC7R06VJ5eXlp+vTpjigVAJCEq1evSlKc5bBBQUG6cOGCDMNQhw4dYt178sknbW0AxEVgByDTevnll/Xyyy87ugwAQAqdOHFCrVu31qlTp2Sapu3x+A4Mql+/vnr06CHTNNW7d2898cQT9iwVAJAM0T/Lb9++HevxLVu2SJK8vLxUvXr1WPfy5s0rSQoJCcn4AoFMiCkoAAAAsJuwsDC1adNGQUFBcnd31zvvvKOVK1cm2L5EiRJq0qSJJOmXX36xV5kAgBQoUKCAJOno0aOxHl+7dq0kqWHDhnH6BAcHS5Ly5MmTwdUBmROBHQAAAOxmypQpOnnypDw8PLRlyxZ9/vnnat26daJ9WrVqJdM0tX37djtVCQBIifr168s0TU2ZMsU2Y+7UqVNavny5DMPQ008/HadP9GFx0WEfgNgI7AAAAGA3S5culWEYGjx4cJzlUQmpVq2apKiltAAA63nllVckSQcOHFDlypX1/PPPq379+goLC5Obm5u6desWp8/mzZslSeXKlbNrrUBmwR52ACyrVKlSKe5jGIZcXV3l5eWlsmXLqn79+urSpYu8vb0zoEIAQEpFL5dq0aJFsvtE73N069atjCgJAJBGTZs21eDBgzVx4kSdOXNGZ8+ete1r9+WXX8rHxydW+7CwMNvsu0aNGjmiZMDyCOwAWNa/T4g1DCPW5uRJ3du5c6fmzZunoUOHauTIkRoxYkRGlQoASKZ79+5JknLmzJnsPvfv35ckZc+ePUNqAgCk3fjx49WsWTMtXrxYly9fVsGCBdWrVy81bdo0TttffvlFuXLlkpeXl5599lkHVAtYH4EdAMvq3bu3pKip9YGBgTJNU3nz5lX16tWVL18+SVFHyO/bt0/Xr1+XYRiqXr26KleurDt37ujQoUMKCgpSWFiYPvjgA126dEnffvutI18SADzy8ubNq8uXL+vMmTOqWbNmsvocPnxYEvscAYDVtW3bVm3btk2yXefOndW5c2c7VARkXuxhB8CyZs+erSZNmujw4cMqVaqUli9frr///lvr16+Xn5+f/Pz8tH79ev39999atmyZSpQoocOHD6tx48b6+eefdeLECe3cuVPVqlWTaZr67rvvtGPHDke/LAB4pEWHdNF7FyXH3LlzZRiGGjRokFFlAQAAWAqBHQDLCgwM1Kuvvqr8+fNrx44devbZZ+XkFPfHlpOTk5577jnt2LFDvr6+GjBggAICAiRJderU0YYNG1SwYEFJ0rRp0+z6GgAAsT3//PMyTVPTpk3TuXPnkmw/YcIEW7jXtWvXjC4PAJCOwsPDdfXqVV29elXh4eGOLgfIVAjsAFjWN998o/DwcI0YMSLORrXxyZcvn0aMGKGHDx/qm2++sT2eN29eDRgwQKZp6o8//sjIkgEASejZs6eqVq2qsLAwPfXUU1qzZk2sPUij9yTdvXu3unfvrqFDh8owDD355JNq1aqVAysHACTH0aNHNWjQIFWoUEGurq4qUKCAChQoIFdXV1WoUEFvvvmmjhw54ugyAcszzIR2cAcABytevLjOnz+vnTt3qnbt2snqExAQoLp166pIkSKxZm78/vvvatq0qXLmzKk7d+5kVMkAgGQ4d+6cnnjiCZ0/f16GYcjd3V0hISGSJB8fH929e9d20IRpmipdurS2bt0qX19fR5YNAEjCiBEj9NVXXykyMjLRw+KcnJw0bNgwffrpp3auEMg8OHQCgGVduXJF0j+nAyZHdNurV6/GejxPnjySxFR8ALCAYsWKad++fRo0aJAWLVqk4OBg272YP78Nw1Dnzp01ZcoU289xAIA1DRo0SN9//70tqKtQoYLq1atnOzDo8uXL2rVrl44cOaKIiAh98cUXCg4O1sSJEx1ZNmBZBHYALMvHx0cXL17U+vXr1bBhw2T1Wbt2ra1vTLdv35Yk2+myAADH8vb21vz58/Xpp59q1apVCggI0JUrVxQREaG8efOqRo0aevbZZ1WuXDlHlwoASMLWrVv13XffyTAMVaxYUdOmTdPjjz8eb9vt27erf//+OnjwoCZPnqwuXbok2BZ4lBHYAbCsJk2aaN68efr666/Vtm3bJJfF7t69W998840Mw1CTJk1i3Ttw4IAk2Q6fAABYQ/HixfX66687ugwAQBpMnTpVklSyZElt3bpVXl5eCbZt0KCBNm/erFq1aun06dP64YcfCOyAeHDoBADLGj58uLJnz66QkBA1atRI7777rg4dOhRrPwzTNHXo0CENHz5cjRs3VkhIiLJnz6533nkn1lg///yzDMNQo0aN7P0yAAAAgCxty5YtMgxD7777bqJhXTQvLy8NHz5cpmlqy5YtdqgQyHw4dAKApc2bN08vvfSSIiIiZBiGJClHjhzy9vaWJN24cSPWxuROTk6aPXu2evbsaRsjKChIzZs3lyTNnTtXTz75pJ1fBQAAAJB1ubm56cGDB9q1a5dq1aqVrD579uxRnTp15Orqajt4CMA/WBILwNJ69OihUqVK6Y033tD+/fslSWFhYbp48WKctlWrVtV3330XZ7+70qVL6/Tp03apFwDwD2dn53QdzzAMDg8CAAtydXXVgwcPYh0ilJTotjly5MiosoBMjcAOgOU9/vjjCgwM1K5du7RhwwYdOnRIN2/elBR1+mulSpXUrFkz1a9f38GVAgBiYiEHADwaSpYsqf3792vFihXJ3oJmxYoVkqRSpUplZGlApkVgByDTqFu3rurWrevoMgAAydS7d+809TdNU6tXr9b169cJ/wDAwlq3bq19+/Zp0qRJeuaZZ9SsWbNE2/v7+2vSpEkyDEOtW7e2U5VA5sIedgAAALCcZcuWafTo0Tp06JCkqPCuWLFiOnPmjGMLAwDEce3aNZUpU0Z3796Vs7Oz+vXrp759+6p69epycoo66zIyMlL79u3TrFmzNH36dD18+FBeXl46efKk8ubN6+BXAFgPgR2ATOX8+fO6fPmyQkJCVKdOHbm5uTm6JABAOlq9erVGjx6tvXv3SooK6goWLKj33ntPr776qlxcXBxcIQAgPuvWrdNzzz2nBw8e2A6Lc3Fxkbe3twzD0PXr1/XgwQNJUT/bXVxctHLlStvhcABiI7ADYHl3797VuHHjNGfOnFiHTRw8eFAVK1a0fb9gwQItXbpUXl5emj59uiNKBQCk0vr16zV69Gjt3LlTUtQ/5nx9fTV8+HANGDBArq6uDq4QAJCUffv2qV+/fgoICEi0Xe3atTV9+nRVq1bNTpUBmQ+BHQBLO3HihFq3bq1Tp07F2r/IMIw4gd2ZM2dUpkwZmaapTZs26YknnnBEyQCAFNi0aZNGjhyprVu3SooK6vLmzathw4Zp4MCBcnd3d3CFAICU2r17t+2wuBs3bkiSvL29VblyZTVv3lx16tRxcIWA9XHoBADLCgsLU5s2bRQUFCQPDw+98cYbatSokdq2bRtv+xIlSqhJkybauHGjfvnlFwI7ALCwbdu2adSoUfL395cUFdTlzp1bb7/9toYMGaKcOXM6uEIAQFJWrVqlX3/9VWfPnlVERIQKFSqkJk2a6IUXXiCUA9KIwA6AZU2ZMkUnT56Uh4eHtmzZourVqyfZp1WrVvrtt9+0ffv2jC8QAJBiAQEBGjlypNatWycpKqjz9PTUkCFD9Pbbb8vLy8vBFQIAkvL333+rffv22rVrV5x7s2bN0siRI7Vs2TJVqVLFAdUBWQOBHQDLWrp0qQzD0ODBg5MV1kmy7YNx4sSJDKwMAJBS+/fv16hRo7Ry5UpJUUGdh4eHBg4cqGHDhsnb29vBFQIAkiMiIkLPPfecdu/enWCb06dPq2XLljpw4IB8fHzsWB2QdTg5ugAASMjRo0clSS1atEh2n+gj4W/dupURJQEAUujw4cN6/vnnVbNmTa1cuVKmacrV1VVvv/22Tp06pc8++4ywDgAykUWLFmn37t0yDENlypTRzJkzdfDgQR07dkyLFy9W/fr1JUXNwvv6668dXC2QeTHDDoBl3bt3T5JStI/R/fv3JUnZs2fPkJoAAMnXtWtXLV68WKZpyjRN5ciRQ6+99preffddFShQwNHlAQBSYdGiRZKi9o/etWuXcufObbtXrlw5tW/fXs2bN9emTZu0ePFiffbZZw6qFMjcCOwAWFbevHl1+fJlnTlzRjVr1kxWn8OHD0sS/xAEAAtYuHCh7Tpfvnx68803VbRoUdv+danRq1ev9CgNAJBKgYGBMgxDQ4cOjRXWRXN2dtbYsWP11FNP6fTp07p79648PT3tXyiQyRHYAbCsmjVravXq1dq8ebM6duyYrD5z586VYRhq0KBBBlcHAEgOwzAkSdeuXdOoUaPSPBaBHQA41tWrVyVJtWvXTrBNzHvXrl0jsANSgT3sAFjW888/L9M0NW3aNJ07dy7J9hMmTNDmzZslRS3DAgA4XvRy2PT6AgA4VmhoqKTEt61xd3e3XYeFhWV4TUBWxAw7AJbVs2dPjR8/XgcOHNBTTz2l7777Ts8884ztvmEYMk1TAQEBmjBhghYsWCDDMPTkk0+qVatWDqwcACBJ/v7+ji4BAOBg/LIFSB3D5P8eABZ27tw5PfHEEzp//rwMw5C7u7tCQkIkST4+Prp7967toAnTNFW6dGlt3bpVvr6+jiwbAAAAyJKcnJxkGIYOHjyoihUrprkdgPgxww6ApRUrVkz79u3ToEGDtGjRIgUHB9vuRe+fIUXNtuvcubOmTJmiPHnyOKJUAAAA4JHx/fffJ+uX5Mlpl9Y9ToGsiBl2ADKNs2fPatWqVQoICNCVK1cUERGhvHnzqkaNGnr22WdVrlw5R5cIAAAAZGnRM+fSU0RERLqOB2QFBHYAAAAAACBZnJzS9+xKwzAI7IB4sCQWAAAAAAAkCwcKAfbBDDsAAAAAAADAQphhB8ASnJ2d03U8wzAUHh6ermMCAAAAAGAPBHYALIHJvgAAAAAARCGwA2AJvXv3TlN/0zS1evVqXb9+nfAPAAAAAJCpsYcdgExv2bJlGj16tA4dOiQpKrwrVqyYzpw549jCAAAAAABIhfQ9jxkA7Gj16tWqU6eOOnXqpEOHDsk0TRUoUECTJk3S8ePHHV0eAAAAAACpwpJYAJnO+vXrNXr0aO3cuVNS1Iw6X19fDR8+XAMGDJCrq6uDKwQAAAAAIPUI7ABkGps2bdLIkSO1detWSVFBXd68eTVs2DANHDhQ7u7uDq4QAAAAAIC0I7ADYHnbtm3TqFGj5O/vLykqqMudO7fefvttDRkyRDlz5nRwhQAAAAAApB8COwCWFRAQoJEjR2rdunWSooI6T09PDRkyRG+//ba8vLwcXCEAAAAAAOmPwA6A5ezfv1+jRo3SypUrJUUFdR4eHho4cKCGDRsmb29vB1cIAAAAAEDGIbADYBmHDx/W6NGj9fPPP0uKCurc3Nw0YMAADR8+XPny5XNwhQAAAAAAZDwCOwCW0LVrVy1evFimaco0TeXIkUOvvfaa3n33XRUoUMDR5QEAAAAAYDeGaZqmo4sAACcnJ9t1vnz59Oabb6po0aJpGrNXr15pLQsAAAAAALsjsANgCU5OTjIMI93GMwxD4eHh6TYeAAAAAAD2wpJYAJbB7w8AAAAAACCwA2AR/v7+ji4BAAAAAABLYEksAAAAAAAAYCFOSTcBAAAAAAAAYC8EdgAAAAAAAICFENgBAAAAAAAAFkJgBwAAAAAAAFgIgR0AAAAAAABgIQR2AAAAAAAAgIUQ2AEAAAAAAAAWQmAHAAAAAAAAWAiBHQAAAAAAAGAhBHYAAACpNGbMGBmGIcMwHF1KpvD777/b3q/ff//d0eVkOn369JFhGCpRooSjSwEAABmMwA4AAKRKzPBlzJgxKe7/1FNPpTrsivnchmHI09NTISEhSfYLDQ2Vl5dXrL4ER5nT8ePHNWzYMNWtW1fe3t7Knj27PDw8VKJECTVr1kzvvPOOVq1alaw/FwAAAFZDYAcAADK9e/fuadmyZUm2W758ue7cuZPxBSFDjR07VpUqVdJXX32l3bt36+bNmwoPD1dISIjOnj2rjRs36ssvv1Tbtm314YcfOrrcRDFLM23OnDlje//mzJnj6HIAAEg3BHYAACBTc3V1lST997//TbJtdJvoPsh8Pv/8c40ZM0bh4eHy8vKyzaTbu3evduzYoSVLlmjYsGF67LHHHF1qupszZ45M09SZM2ccXQoAAMhg2RxdAAAAQFo899xzWrRokdavX6/Lly+rQIEC8ba7cuWK1q1bJ0lq166dFi5caM8ykQ6uXbumsWPHSpKKFCmibdu2qWjRorHa1KtXT506ddK4ceO0a9cuXb9+3RGlAgAApAkz7AAAQKbWokULFShQQBEREfrpp58SbPfTTz8pPDxcBQoU0NNPP23HCpFe1q1bp7CwMEnSu+++Gyes+7e6deuqVatW9igNAAAgXRHYAQCATM3Z2Vldu3aVlPiy2Llz50qSunXrJmdn5wyp5datWxo9erQqVaqknDlzytvbW02aNEk0SJSkBw8eaMWKFRo4cKDq1KmjPHnyKHv27MqbN6/q1aunMWPG6Nq1a0k+/8aNG9W1a1eVLFlSbm5ucnd3V/HixVW/fn395z//0caNGxPtv3fvXvXv31/ly5dXzpw55eHhofLly2vAgAE6fvx4ks8fGhqqTz/9VNWqVZOHh4fy5s2rhg0bavr06YqMjEyyf1LOnTtnuy5Tpkyax5OkkydP6q233lKVKlXk5eUlNzc3lSpVSn369FFAQECC/eI78XbRokVq1qyZ8uXLJzc3N5UvX17vvPOObty4Eaf/nDlzZBiGbcagpFiHoUR/xVz+mtQpsf8+BMbf31/t27dXoUKF5ObmpgoVKuijjz5ScHBwrH6rV69W69atbe0qVqyozz77TA8ePEjy/QsLC9PkyZPVrFkzFShQQC4uLvL19VXz5s01c+ZMhYeHJ9i3RIkSMgxDffr0kST9+eefevXVV1WiRAnlyJFD+fPnV4cOHbRjx44EX2/JkiVt37/00ktx3r/UHIgDAIAlmAAAAKng7+9vSjIlmaNHj05x/8aNG9v6p+W5Z8+ebe7du9f2/aFDh+K0P3z4sO1+YGCgOXv2bNv3/v7+KX7+aKNHj7aNc+rUKbN06dK27//91blzZ/Phw4fxjtO7d+8E+0V/5c2b1/zjjz8SrGXIkCHJGiM+ERER5ltvvWUahpFg32zZsplTp05N8PkvXbpkVqhQIcH+LVu2NNeuXZum9/3rr7+29R8/fnyK+//bl19+aWbPnj3Bmg3DMEeOHBlv35h/Bn/77TezR48eCY5TpkwZ89KlS7H6x/wzmNjX6dOnbX2i/5wUL1483ppi/v/42WefJfjf8/HHHzfv3btnRkZGmm+++WaCz/3MM8+Y4eHhCb5/+/btM4sXL55o/XXq1DEvX74cb//ovr179zaXLl1quru7xzuGs7OzuWDBggRfb2JfqfnZBACAFTDDDgAAZHo1atRQpUqVJMU/yy76scqVK6t69eoZUkOXLl10+vRp9e/fXxs2bNDu3bs1c+ZMlStXTlLU7Kthw4bF2zc8PFylSpXS0KFDtXDhQm3fvl27d+/WkiVL1L9/f7m4uOj69evq0KGDrly5Eqf/ypUrNWHCBElS1apVNWXKFP3+++8KDAyUv7+/Jk+erPbt2ytHjhzxPv+gQYM0fvx4maapRo0aadasWfr999+1a9cuTZ8+XZUqVVJ4eLhee+01/fLLL/HW37ZtWx09elRS1DLln3/+WQEBAVq6dKmaN2+utWvX6oMPPkjNW2tTs2ZN2/Wnn36q/fv3p3qsL7/8UsOGDdPDhw9t79mGDRsUEBCg+fPnq0GDBjJNUx999JG+/fbbRMcaOXKk5s2bp/bt22vp0qXas2ePVq9erTZt2kj6ZxZfTO3bt9fBgwc1YMAA22MHDx6M81W4cOEUv7Y1a9ZoxIgRql+/vvz8/BQQEKBff/3Vtjx427Zt+uyzzzR+/Hh9++23atWqlf73v/9pz549Wr58uerXry9J+vXXXzV9+vR4n+PkyZNq3Lixzp49q1y5cmnEiBG2/+Zr167VG2+8oWzZsmn37t1q166dHj58mGC9Bw8eVLdu3ZQ/f35NnjxZO3bs0Pbt2zVmzBi5uroqIiJC/fr109WrV+P0W7t2re37jz/+OM779/rrr6f4/QMAwBIcnRgCAIDMyUoz7EzTNL/44gtTklm0aFEzMjLS1jYyMtIsWrSoKckcN26caZpmhsywk2T6+fnFaXPnzh2zWrVqpiTTycnJPHjwYJw2J0+ejFXzvx04cMDMmTOnKcn84IMP4tzv2bOnbebV3bt3Exzn+vXrcR5bt26drf4ZM2bE2y80NNRs2rSp7Tn+PVNw8uTJtjH69esX7xh9+/aN9V6l5n2PiIgwq1atGmsG3FNPPWV+8skn5m+//WbeunUrWeMcPnzYNrNu9OjR8b73ERERtllzOXPmNG/cuBHrfsw/g5LMjz/+OM4YkZGRZosWLWwzFK9cuRKnTcw/Q0lJ7gw7SWanTp3izI4LDw8369evb0oyPT09TVdXV3PIkCFxxgkODrbNfqtatWq8z/X444+bkswaNWqYV69ejbfNmjVrTCcnJ1OSOW3atDj3Y87Oq1Wrlnn79u04bebNm2dr880338S5f/r06Tg/CwAAyAqYYQcAALKE7t27y8nJSX/99ZdtTzEpaq+xv/76S05OTurWrVuGPX/btm1te+nF5OnpqWnTpkmSIiMj9cMPP8RpU7p0aRmGkeDYVapU0SuvvCJJWrZsWZz7ly9flhQ1Ay1nzpwJjuPt7R3nsc8//1yS1KlTJ7388svx9nN1ddXkyZMlSWfPnpW/v3+s+99//70kKX/+/Bo/fny8Y0ycOFH58uVLsLbkcHJy0v/+9z/b/nWmaer333/X+++/r2bNmilPnjyqWrWqhg8fnuiee19//bUePnyo2rVra/To0fG+905OTpo0aZJy5Mihe/fuacmSJQmOV6tWLb333ntxHjcMQ2+//bakqFmI27dvT+lLThV3d3dNmzYtzl6Nzs7O6tevnyTp7t27ypcvn8aNGxdv/969e0uSDhw4oNu3b8e6v2XLFm3btk2S9OOPP8rHxyfeOp555hk9//zzkqL27EvMrFmzlCtXrjiPd+vWTYUKFbI9LwAAjwoCOwAAkCUULlxYTZo0kRR7WWz0ddOmTVO1vDC5XnrppQTv1a1b17Zkd8OGDUmOdfPmTQUFBenw4cM6dOiQDh06pNy5c0uSjhw5Emd5YcGCBSVJmzdvVlBQULJrvnPnji3cjA5WElKhQgVbMBMzeLp06ZKOHDkiSercubPc3d3j7Z8zZ0517tw52bUlpEyZMtq/f7/GjRtnW24czTRNHTx4UOPGjVPFihU1dOjQeA89WLFihaSokDKxoDR37tyqUqWKJCUatnXr1i3BcWrVqmW7PnXqVMIvLB09/fTT8YazklStWjXbdceOHZU9e/Yk250+fTrWvehl0eXLl7e9Pwlp1KiRJGn37t0JHkBRpUoVVa1aNd57hmGoRo0akuz3/gEAYAUEdgAAIMvo1auXJOl///ufQkNDFRoaapsZFX0vKRcuXLCFZP/+unDhQoL96tSpk+i4devWlSQdP3483tM3Dx48qL59+6pgwYLy9vZWmTJlVLlyZVWpUkVVqlSxnXYZGRmpmzdvxvu6r1+/rsqVK+vFF1/U7NmzdfLkyURrCgwMtJ3e2rVr13hPKY35FX1SbfSMvui6U/oepJW7u7uGDRumP//8UydPntTcuXM1ePBg1a1bV05OUR9vIyIi9M0338SZNXj27FnbXmgjRoxI8jVHnxQb8zX/22OPPZbgvZjB2d27d1P9mlPi30FmTNHBb0ra/bvu6Pfkzz//TPL9GzhwoCTp4cOH8Z6WKyX+/kn/vIf2ev8AALACAjsAAJBldOzYUe7u7rpz546WL1+uZcuW6e7du/Lw8FDHjh2TNcb7779vC8n+/fX+++8n2M/X1zfRcfPnzy8pahbYvwO3mTNnqmbNmpo9e3aiwVC00NDQWN83a9ZMkydPlpubm8LCwrRw4UL17dtXZcuWVZEiRdS/f/94D2iI7wCL5AgJCbFdxwxhkvsepKfSpUurZ8+emjBhgnbu3Klz587Zlg9L0ty5c/XHH3/Yvk+P1/xvCc0qlGQLEKWoENEekltPautO7/cwsTpi1mKv9w8AACvI5ugCAAAA0kvOnDnVoUMHzZ8/X//9739lmqYkqUOHDvLw8MjQ505saWVijh07pv79+ys8PFy+vr4aNmyYmjZtqhIlSsjT09O2ZHHWrFm22WLRryumN954Qy+88IL8/Py0fv16bd26Vbdv39aFCxc0depUTZs2Te+9954+/vhjW5+YAcjUqVP1+OOPJ6vmPHnyxPt4at+D9FS4cGFNnz5d9+7d04IFCyRJixcv1hNPPCEp9mseNWqUXnjhhWSNm9F/fjKT6PewWrVqmjdvXrL7ZeSSdAAAshoCOwAAkKX06tVL8+fP17p162I9llxz5sxJcoP8+Pz9998qWrRoovelqFArZuA1Z84chYeHy9nZWZs2bUpweWBCywlj8vX11ZAhQzRkyBBFRkZq3759+vnnnzV58mTdunVLn3zyierUqaN27dpJkvLmzWvr6+7ursqVKyfrtcYU87VEv8aEJHU/Pb366qu2wC7m0uCYrzl79uypes2Puuj38N69e7x/AABkEJbEAgCALKVZs2YqWLCgwsPDFR4erkKFCqlZs2YZ/ry7d+9O1v2yZcvKxcXF9vjhw4clRc1WSmwvr+h9w5LLyclJNWvW1EcffaTffvvN9viiRYts19WrV7fNitu6dWuKxo8W89CB5L4H9hB9sqgUe+ZfqVKl5OXlJSn1rzk9WWFWYkrFPAQiOUu4M1JmfP8AAEgOAjsAAJClODs7q2fPnsqRI4dy5Mihnj17xtqPK6P8+OOPCd7bvXu3Dh06JElq3rx5rHvRJ2cGBwcn2P/SpUu2kzlTo2bNmraZcNEHR0hSvnz5VL9+fUmSn5+f7TCGlChUqJAqVKggKWrp6b/314sWHBwcKyxMjfiWAickZsBZqlQp27Wzs7Nat24tSVq3bp2OHj2apprSytXV1XZ9//59B1aSfM8995ykqP8eEydOdGgtmfH9AwAgOQjsAABAlvPFF18oLCxMYWFh+vzzz+3ynL/88ku8gdS9e/f02muvSYqa9RZ9Ha1s2bKSpBMnTmjbtm1x+oeEhKhbt24JBmGStHDhwkTvBwQE2A66KFmyZKx7H3zwgSTpzp07ev7553Xr1q0Ex7l//76+++47hYWFxXp8wIABkqJOUh06dGi8fd96661UH1YQbfr06erXr1+Sp9+ePXs21gEh0UuAo40YMULOzs6KjIzU888/r/Pnzyc4VkREhObPn59om7QoWLCg7TooKChDniO9tWjRwnbi75dffplkEHvw4EGtWLEiQ2rJmzevbcZqZnn/AABIDvawAwAAabZv375k7fvWtGlTFStWLM7jyenr7e1tm9ljRbVr11a3bt20adMmPf/888qVK5cOHDigL774Qn/++aekqIMhqlatGqtfz549NWnSJEVGRqpNmzYaNmyYnnjiCbm6umrPnj0aP368Tpw4oYYNGya4hHP48OHq37+/2rVrp0aNGqlcuXLy8PDQ9evX9ccff2jSpEmSomaXxTxBVZJat26twYMHa+LEidq8ebMqVKig/v3764knnlDevHkVHByskydPasuWLVq6dKlu3ryp3r17xxpjwIABmj17tgIDAzVlyhSdPn1a/fv3V9GiRfXXX3/p+++/17p161S7du0UL+2N6cGDB5o+fbqmT5+uhg0bqkWLFqpVq5by588vJycnXbhwQf7+/poxY4bu3r0rKSqs+/eS6CpVquirr77SW2+9pSNHjqhy5crq16+fmjZtqvz58yssLExnzpzR9u3btWTJEl26dEkHDx5UkSJFUl17QmIe9PHWW2/p/fffV8GCBW1LPUuUKKFs2az3kd3Pz09169bVjRs31KVLF82bN09dunRR2bJl5ezsrCtXrigwMFArVqzQjh07NHToUD377LPpXke2bNlUp04dbd26VbNmzVKNGjVUvXp122Et3t7e8vb2TvfnBQAgw5kAAACp4O/vb0pK0dfPP/9s69+4ceMU9a1WrVq8zz179uwU1z579mxbf39//1S/B6NHj7aNc+rUKbNkyZIJ1t+pUyfz4cOH8Y4zduzYRF/70KFDY9V8+vTpWP2LFy+e5PuXI0eOBN+ryMhIc+zYsWa2bNmSHMfDw8MMCQmJM8aFCxfM8uXLJ9ivRYsW5tq1a9P0vi9cuNB0cXFJ9p+Zbt26xVtrtGnTppnu7u5JjuPi4mKeOHEiVt+YfwaTei3R7UaPHh3v/c6dOyf43DH/W/fu3duUZBYvXjxVz2Oapnn69Olk/b+TnNf3559/mpUrV07Wf4uxY8fG6R/957Z3794J1mGaSb/ulStXmoZhxPu8ib0XAABYGUtiAQAA0kHJkiW1Z88evffee6pQoYLc3d3l5eWlRo0aad68eVqyZEmCM6VGjRqlVatWqUWLFsqTJ49cXFxUpEgRdezYUevWrdNXX32V6HP7+/tr4sSJ6tSpk6pUqaJ8+fIpW7ZsypUrl2rUqKH//Oc/OnLkiPr06RNvf8MwNGrUKB0/flzvvPOOateuLW9vbzk7O8vT01MVK1ZU9+7d9eOPP+rSpUtyc3OLM0ahQoUUGBiojz/+WJUrV5abm5ty586t+vXr6/vvv9eaNWtiHbaRGp07d9aVK1e0aNEivfHGG2rQoIHy588vFxcXubi4yMfHR/Xr19dbb72lgIAAzZ8/P95ao7366qs6deqUxo4dq4YNG8rHx0fZsmWTh4eHypUrp06dOumHH37QhQsXVKZMmTTVnph58+Zp3Lhxqlu3rry8vOyy52J6KFeunPbt2yc/Pz916tRJxYoVk5ubm1xcXFSwYEE99dRT+uCDD7Rnzx6NGjUqw+po06aNfvvtN7Vr106FChWyza4DACAzM0wzBbv3AgAAAAAAAMhQmePXdwAAAAAAAMAjgsAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAshMAOAAAAAAAAsBACOwAAAAAAAMBCCOwAAAAAAAAACyGwAwAAAAAAACyEwA4AAAAAAACwEAI7AAAAAAAAwEII7AAAAAAAAAALIbADAAAAAAAALITADgAAAAAAALAQAjsAAAAAAADAQgjsAAAAAAAAAAshsAMAAAAAAAAs5P8APHC4XfqxfmAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 468, + "width": 630 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "from textblob import TextBlob\n", + "\n", + "\n", + "def get_sentiment(text):\n", + " return TextBlob(text).sentiment.polarity\n", + "\n", + "\n", + "merged_df[\"textblob_sentiment\"] = merged_df[\"content\"].apply(get_sentiment)\n", + "\n", + "\n", + "def categorize_sentiment(score):\n", + " if score > 0.05:\n", + " return \"Positive\"\n", + " elif score < -0.05:\n", + " return \"Negative\"\n", + " else:\n", + " return \"Neutral\"\n", + "\n", + "\n", + "merged_df[\"textblob_sentiment_category\"] = merged_df[\"textblob_sentiment\"].apply(\n", + " categorize_sentiment\n", + ")\n", + "\n", + "# Compare the results\n", + "comparison = pd.crosstab(\n", + " merged_df[\"few_shot_sentiment\"], merged_df[\"textblob_sentiment_category\"]\n", + ")\n", + "print(\"Sentiment Analysis Comparison:\")\n", + "print(comparison)\n", + "\n", + "# Visualize the comparison\n", + "plt.figure(figsize=(10, 6))\n", + "comparison.plot(kind=\"bar\", stacked=True)\n", + "plt.title(\"Comparison of LLM-based and TextBlob Sentiment Analysis\")\n", + "plt.xlabel(\"LLM-based Sentiment\")\n", + "plt.ylabel(\"Count\")\n", + "plt.legend(title=\"TextBlob Sentiment\")\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Key Issue Extraction Evaluation\n", + "\n", + "Evaluate the performance of the LLM-based key issue extraction by comparing it with a traditional keyword extraction method.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Comparison of LLM-based and TF-IDF Keyword Extraction:\n", + " key_issues tfidf_keywords\n", + "0 energy efficiency; electricity usage reduction... the; energy; and\n", + "1 water quality; contamination; strip mining the; of; to\n", + "2 habitat destruction; environmental damage; flo... and; the; of\n", + "3 Energy burdens; Historic discrimination; Disin... the; of; and\n", + "4 oil and gas drilling in the Arctic; thermal co... the; and; to\n", + "5 clear cutting land; destruction of Garcia Past... the; and; rio\n", + "6 methane pollution; public lands; polluted air the; and; to\n", + "7 fracked gas pipelines; tolling orders; eminent... the; to; and\n", + "8 fossil fuel electricity generation; clean ener... the; energy; and\n", + "9 air quality; noise pollution; environmental ju... the; and; of\n" + ] + } + ], + "source": [ + "from sklearn.feature_extraction.text import TfidfVectorizer\n", + "\n", + "\n", + "def extract_keywords(text, n=3):\n", + " tfidf = TfidfVectorizer(max_features=100)\n", + " response = tfidf.fit_transform([text])\n", + " feature_array = np.array(tfidf.get_feature_names_out())\n", + " tfidf_sorting = np.argsort(response.toarray()).flatten()[::-1]\n", + " return \"; \".join(feature_array[tfidf_sorting][:n])\n", + "\n", + "\n", + "merged_df[\"tfidf_keywords\"] = merged_df[\"content\"].apply(extract_keywords)\n", + "\n", + "# Compare a sample of results\n", + "sample_comparison = merged_df[[\"key_issues\", \"tfidf_keywords\"]].head(10)\n", + "print(\"Comparison of LLM-based and TF-IDF Keyword Extraction:\")\n", + "print(sample_comparison)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 6. Analysis and Interpretation\n", + "\n", + "Based on the results of these traditional NLP techniques, analyze and interpret the findings:\n", + "\n", + "1. How do the traditional classification methods compare to the LLM-based zero-shot classification? Discuss the strengths and weaknesses of each approach.\n", + "2. What insights do the LDA topics provide about the main themes in Sierra Club press releases? How do these compare with the zero-shot classification results?\n", + "3. What patterns do you observe in the word co-occurrence analysis? How might these inform our understanding of environmental communication strategies?\n", + "4. Compare the sentiment analysis results from the LLM-based and lexicon-based methods. What are the implications of any differences for social science research on environmental advocacy?\n", + "5. Evaluate the effectiveness of the LLM-based key issue extraction compared to the TF-IDF method. What are the pros and cons of each approach for analyzing environmental communication?\n", + "\n", + "## 7. Exercise\n", + "\n", + "For your exercise, please complete the following tasks:\n", + "\n", + "1. Implement a traditional NLP approach (e.g., rule-based or machine learning) to extract quotes from the press releases. Compare its performance with the LLM-based quote extraction you implemented in Lab 2.\n", + "\n", + "2. Use a traditional NLP technique (e.g., pattern matching, named entity recognition) to identify organizations mentioned in the press releases. Compare these results with the key issues extracted by the LLM.\n", + "\n", + "3. Apply a lexical diversity measure (e.g., type-token ratio or MTLD) to analyze the complexity of language used in the press releases. Investigate if there's any correlation between language complexity and the topics or sentiments of the releases.\n", + "\n", + "4. Create a visualization that combines insights from both traditional NLP techniques and LLM-based analyses. For example, you could create a scatter plot of lexical diversity vs. sentiment, with points colored by the zero-shot classification topic.\n", + "\n", + "5. Write a brief (300-350 words) comparative analysis of traditional NLP techniques and LLM-based approaches for analyzing environmental communication. Discuss the strengths, weaknesses, and potential complementarities of these methods in the context of social science research.\n", + "\n", + "Submit your code, visualizations, and written analysis.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "nlp4ss", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}