forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.sh
executable file
·61 lines (52 loc) · 1.81 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#!/bin/bash
# Runs unit tests and executes two epochs of sgmcmc sampling for the resnet and
# lstm model.
#
# Has to be executed from the parent folder by the shell command
# $ cold_posterior_bnn/run.sh
set -e
set -x
# setup virtual environment and install packages
virtualenv -p python3 .
source ./bin/activate
pip install -r cold_posterior_bnn/requirements.txt
# unit tests
python -m cold_posterior_bnn.core.ensemble_test
python -m cold_posterior_bnn.core.frn_test
python -m cold_posterior_bnn.core.model_test
python -m cold_posterior_bnn.core.prior_test
python -m cold_posterior_bnn.core.priorfactory_test
python -m cold_posterior_bnn.core.sgmcmc_test
python -m cold_posterior_bnn.core.statistics_test
python -m cold_posterior_bnn.core.diagnostics_test
# example of run with SG-MCMC, on CIFAR10 with ResNet
python -m cold_posterior_bnn.train \
--model="resnet" \
--dataset="cifar10" \
--train_epochs=2 \
--cycle_length=1 \
--cycle_start_sampling=1 \
--batch_size=512 \
--pfac="gaussian"
# example of run with SG-MCMC, on IMDB with CNN-LSTM
python -m cold_posterior_bnn.train \
--model="cnnlstm" \
--dataset="imdb" \
--train_epochs=2 \
--cycle_length=1 \
--cycle_start_sampling=1 \
--batch_size=512 \
--pfac="gaussian"